La tomographie ultrasonore en réflexion emprunte à l'échographie son principe de base physique (l'exploitation des échos rétrodiffusés par le milieu dont on veut faire l'imagerie) et à la tomographie par rayons X sa méthode entièrement numérique de construction des images (algorithmes de reconstruction à partir de projections). Du point de vue du traitement du signal on a affaire à un problème de synthèse de Fourier avec données lacunaires, les acquisitions donnant accès, dans la plan de Fourier image, à des coupes radiales en nombre limité et d'étendue elle aussi limitée. Les deux problèmes qui se posent donc sont celui de la restauration des hautes fréquences qui conditionne directement la résolution; et celui du lissage angulaire qui conditionne le bruit de reconstruction. On propose une solution à ces deux problèmes.

1. **MODELISATION**

On peut montrer que la fonction de transfert ultrasonore en rétrodiffusion d'un milieu dans une direction \(n_0 \) s'écrit, à l'ordre 1 dans l'approximation de Born et à grande distance \(/1/ \):

\[
h_R(1)_{(n_0,0)} = -2k^2 \xi(K) \quad \text{avec} \ K = -2k_n_0
\]

où \(\xi(K) \) est le transformée de Fourier spatiale des fluctuations d'impédance acoustique \(\xi(x) \).

Si on se contente d'imagier incohérente en mesurant non pas la réponse impulsionnelle \(h_R(t) \) (transformée de Fourier inverse de \(h_R(\omega) \)) mais l'enveloppe \(a_R(t) \) des échos réels (ce qui intègre la fonction de transfert du transducteur), à laquelle on associe la transformée de Fourier \(A_R(\omega) \) on obtient la relation analogue \(/2/ \):

\[
A_R(n_0,0) = A(K) , \text{avec à nouveau} \ K = -2k_n_0
\]

où \(A(K) \) est la transformée de Fourier de la fonction \(r(x) \) appelée réflectivité du milieu.

Le problème qu'on se pose est de reconstruire cette réflectivité \(r(x) \) du milieu. On voit qu'il s'agit simplement d'inverser une transformée de Fourier multidimensionnelle. Mais pour cela encore faut-il "remplir" suffisamment de données le plan de Fourier \([K_x, K_y] \) pour couvrir au mieux le spectre de l'objet avant de procéder à l'inversion.

On voit qu'un "tir" monochromatique à une certaine incidence donne accès à un point du spectre. Un "tir" à large bande comme peut le faire un échographe, couvre un segment de dimension \([K_{\text{min}}, K_{\text{max}}] = [2k_{\text{min}}, 2k_{\text{max}}] = [2\omega_{\text{min}}/c_0, 2\omega_{\text{max}}/c_0] \) dans la direction du tir. Un tel tir effectue donc une coupe radiale (partielle) du plan de Fourier de l'objet.

Il suffit ensuite d'effectuer une rotation complète du transducteur d'émission-réception autour de l'objet (ou une rotation de l'objet sur lui-même) pour couvrir pas à pas le plan de Fourier de l'objet, par coupes radiales successives, selon une couronne de centre \(O \) et de rayons internes et externes \([K_{\text{min}}, K_{\text{Max}}] \).

D'où trois conclusions:

- Par ce protocole d'acquisitions, le plan de Fourier de l'objet est balayé par coupes radiales successives, comme en Tomographie X classique. L'algorithme de reconstruction qui s'impose donc naturellement est l'algorithme classique de
sommaton des rétrophrojections (ou épandages) des projections (les transformées inverses des coupes, c.a.d. les données temporelles elles-même) filtrées.

2. Construction de la projection filtrée

\[\hat{\pi}_\phi(\xi) = TF^{-1}(\chi | \hat{P}_\phi(\chi)) \]

3. Rétrophrojection (ou épandage) de la projection filtrée

\[\Pi_\phi(\xi, \eta) = \pi_\phi(\xi) \]

4. Sommation des rétrophorjections des projections filtrées

\[r(x, y) = \frac{1}{2\pi} \int_0^\pi \Pi_\phi(\xi, \eta) \, d\phi. \]

C'est l'algorithme usuel utilisé en tomographie X. Sa mise en œuvre pratique suppose qu'on dispose d'un grand nombre d'acquisitions angulaires finement échantillonnées et régulièrement réparties. Les acquisitions de signaux étant faites avec un échantillonneur haute fréquence (oscilloscope à mémoire numérique) pourvu d'une mémoire importante (typiquement 1000 points), la discrétisation radiale des coupes dans le plan de Fourier peut être considérée comme satisfaisante. Par contre, l'échantillonnage angulaire, résultant d'un balayage mécanique, est toujours assez lâche (il n'est pas raisonnable de dépasser 180 acquisitions) et la bande spectrale des signaux très limitée (typiquement 1 octave). Se pose donc un problème d'interpolation angulaire et d'extrapolation de bande.

3. LISSAGE ANGULAIRE

Considérons la projection \(P_0 \) obtenue en effectuant un tir dans la direction \(\theta \). La contribution de ce tir au pixel \(\text{PIX} \) (de coordonnées \(\text{PIX}_i, \text{PIX}_j \)) dans le repère cartésien utilisé \(\text{(O, } i, j \text{)} \) est déterminée par l'acquisition au point \(T \), projection orthogonale du pixel sur \(P_0 \).

Ce point décrit, lorsque \(\theta \) varie de 0 à \(2\pi \), un cercle \(C \), de diamètre \(O, \text{PIX} \), que nous appelons "cercle des contributions" /3/.

Pour une direction \(\theta \) donnée, le point \(T \) se trouve sur la droite \(P_0 \) (et sur le cercle \(C \)) à la distance \(r = \text{PIX}_i \cos \theta + \text{PIX}_j \sin \theta \) de l'origine \(O \).

L'algorithme de reconstruction pixel par pixel prenant en compte toutes les projections acquises est alors:

\[\text{PIX} = \Sigma \text{val}[p_k] \quad 0 \leq k \leq \text{Nbre de tirs} \]

\[\rho_k : \text{distance } (O, T_k), \text{val}[p_k] : \text{valeur de la projection en } T_k. \]

Il est intéressant d'avoir une vue synthétique du lieu de toutes les contributions pour essayer d'éliminer les rétrophorjections parasites. Cette rétrophrojection ou épandage consiste à étendre la valeur de chaque point de \(P_0 \) sur toute l'image, perpendiculairement à la direction \(\theta \). L'information redondante est ensuite mise en exergue sur l'image par sommation en faisant varier \(\theta \), tandis que les points de forte
énergie mais sans redondance génèrent, eux, des "trainées" orthogonales à \(\Phi_g \).

\[\begin{array}{c}
\text{Géométrie de reconstruction.}
\end{array} \]

Notre idée \(/3/\) est d’admettre que les fonctions décrivant les frontières des milieux biologiques ne sont jamais parfaitement planes et qu’il existe autour de l’angle de réflexion spéculaire, un certain voisinage où la réflexion n’est pas nulle. Au contraire, lorsqu’il s’agit d’une contribution parasite, l’énergie apportée est concentrée dans la seule direction \(\theta + \frac{\pi}{2} \).

D'où l'idée d'effectuer un filtrage passe-bas sur le cercle des contributions, de manière à éliminer les réflexions parasites.

L'algorithme de reconstruction considère séquentiellement chaque pixel, détermine l'ensemble des contributions propres à chaque tir, puis le cercle des contributions est filtré passe-bas, avant d'effectuer l'intégration.

Le filtre passe-bas que nous utilisons est un filtre homomorphique conçu par les sonaristes pour répondre à un besoin d'extraction de la "courbe pied de raie" en normalisation spectrale \(/4/\). Il permet d'effectuer un filtrage large bande avec suppression efficace des hauteurs fréquences, tout en conservant une mémoire de transition de faible étendue.

Il consiste en un premier temps à rendre positif le signal et à en réduire fortement les variations relatives par l'ajout d'une constante dix fois plus importante. On comprime ensuite la dynamique en appliquant la fonction logarithme. Le filtrage passe-bas proprement dit est alors effectué à l'aide d'un filtre classique de type Tchébychev ou elliptique.

Ces filtres ont l'inconvénient d'être très "influencables",

c.a.d. qu'ils révèlent la présence de pics de forte amplitude,

\[\begin{array}{c}
\text{Comparaison des distributions d'énergie}
\end{array} \]

Cette figure montre la différence des distributions d'énergie entre un pixel situé sur un dioptre Pix 2, et un pixel situé sur une "ligne parasite" Pix 1.

même s'ils sont de durée très brève, longtemps après leur apparition. La compression de dynamique supprime cet inconvénient. Par application de la fonction exponentielle, nous restaurons ensuite le signal filtré.

4. \textbf{DECONVOLUTION DES SIGNAUX RF.}

Afin d'exploiter au mieux l'information délivrée par le transducteur large-bande utilisé, on effectue un prétraitement par déconvolution des signaux RF, avant démodulation et injection dans l'algorithme de reconstruction. L'algorithme de déconvolution utilisé, à base de filtrage de Kalman, a été mis au point par l'équipe de G. Demoment au L2S \(/5/\). Son effet est d'améliorer sensiblement la résolution des images et d'en réduire également le bruit de fond.

5. \textbf{RESULTATS}

Nous avons implanté ces procédures sur notre banc expérimental de tomographie ultrasonore. Rappelons \(/6/\) qu'il s'agit d'un système opérant séquentiellement des acquisitions échographiques avec une chaine du commerce et effectuant numériquement l'imagerie à partir de ces données. Nous présentons des images obtenues sur un os de mouton excisé \(/3/\), avec 180 acquisitions angulaires réparties sur 360°, le transducteur utilisé ayant une fréquence centrale de 2,25 MHz et en gros 1 octave de largeur de bande.
On voit que des structures non résolues par l'algorithme standard (figure 1) le sont par action conjuguée de notre algorithme de lissage angulaire et de l'algorithme de déconvolution (figure 2).

6. **BIBLIOGRAPHIE**

