APPLICATION DE LA MODELISATION GEOMETRIQUE DE LA PROPAGATION ACoustique SOUs-MARINE EN PETITS FONDS ET HAUTES FREQUENCES

Xavier LURTON

Thomson-Sintra Activités Sous-Marines - 1, avenue Aristide Briand - 94117 Arcueil Cedex

RESUME

Les phénomènes de propagation liés à l'utilisation de sonars actifs par petits fonds sont décrits de façon adéquate par un modèle géométrique de l'énergie moyenne. Cette approche, classique pour l'évaluation des pertes de propagation, est étendue ici aux aspects temporels du signal transmis, en particulier les niveaux de réverbération : le calcul ainsi défini permet une amélioration très significative par rapport aux méthodes usuelles par rayons propres, tant en charge de calcul qu'en fiabilité des résultats. Une autre extension est proposée pour l'évaluation de l'influence du relief de surface, dont l'effet est de diffuser l'énergie incidente vers des directions angulaires voisines : ce phénomène est traité sous forme d'un couplage entre les différentes directions de propagation.

SUMMARY

Propagation phenomena associated with the use of active sonars in shallow water are adequately described by a geometrical model of range-averaged intensity. This approach, classical for transmission losses computation, is extended here to temporal aspects of transmitted signals, particularly to reverberation levels: this modelisation provides a very significant improvement upon usual "eigenrays" methods, in computation times as well as in results reliability. Another extension is proposed for evaluating the influence of the sea-surface roughness, whose effects is to scatter the incident energy towards adjacent angular directions; this phenomenon is treated as a coupling effect between the different geometrical directions of propagation.

INTRODUCTION

La propagation acoustique sous-marine en hautes fréquences et par petits fonds n'est en général pas décrite de façon satisfaisante par les méthodes classiques de calcul du champ acoustique :

- les calculs de "rayons propres" source-récepteur ("eigenrays") font intervenir de très nombreux rayons en incidence rassante, dont le nombre est souvent redhibitoire et la détermination précise peu fiable,

- les méthodes ondulatoires (modes propres, FFP, équation parabolique) impliquent des charges de calcul proportionnelles à la fréquence ou à son carré, et sont donc rapidement prohibitives.

Plusieurs travaux antérieurs (ref. 1 à 4) proposent de modéliser ce type de propagation par une approche géométrique de l'intensité moyenne : à chaque direction d'émission par la source est associé un "trait cyclique", (en raison des nombreuses réflexions/fréctions successives auxquelles il est soumis) caractérisé par une distance cyclique, une loi de dépendance de l'intensité en immersion, et un décrément exponentiel en distance dû à l'absorption et aux pertes par réflexions. Le champ transmis est obtenu par intégration de l'ensemble des contributions angulaires élémentaires.

Nous proposons ici l'extension de cette approche :

- à l'évaluation des caractéristiques temporelles du champ : enveloppe du signal transmis, influence de la durée du signal sur le niveau global, et surtout calcul du niveau de réverbération,

- au calcul de l'influence du relief de surface, en introduisant la diffusion angulaire de l'énergie incidente provoquant un couplage entre les différents rayons cycliques.

1. NOTATIONS UTILISEES ET PERTES DE PROPAGATION

En petits fonds stratifiés, chaque trajet est constitué de nombreux "cycles" identiques, en raison des valeurs importantes du rapport distance/hauteur d'eau. Chaque "rayon cyclique" d'angle d'émission \((\theta, \phi + d\theta)\) est caractérisé par (Fig. 1) :

- sa distance de récurrence \(D_\theta\),

- sa probabilité de présence \(M_\theta(z)d\theta\) à l'immersion \(z\), déterminée par la largeur locale du faisceau rapportée à la distance cyclique,

- son facteur de divergence géométrique \(P_\theta(z)\),

- son facteur d'amortissement en distance \(A_\phi(r)\), traduit par un coefficient de décroissance exponentielle en distance \(a_\phi\) prenant en compte l'absorption du milieu et les pertes par réflexions aux interfaces ramenées à la distance cyclique.
Figure 1 – Structure du faisceau $[\theta, \theta + 8\theta]$.

L'intensité moyenne du champ est finalement donnée par :

$$<p^2(r, \theta)> = r^{-1} \int_0^\theta P_\theta D_\theta^{-1} M_\theta(\theta) \exp(-\alpha_0 r) d\theta$$

soit en remplaçant les caractéristiques cycliques par leurs expressions respectives :

$$<p^2(r, \theta)> = 4 r^{-1} \int_0^\theta \cos \theta \sin^{-1} \theta (D_\theta^{-1}) \exp(-\alpha_0 r) d\theta$$

(Voir par exemple BREKHOVSKIKH (ref. 1)).

Les pertes de propagation calculées par cette approche sont en très bon accord avec les résultats d'autres méthodes. On donne par exemple en Fig. 2 le tracé des pertes ainsi obtenues pour une hauteur d'eau de 100 m comparées à celles du calcul modal (les 258 modes étant sommés en énergie). On constate que l'accord est excellent, exception faite du comportement oscillant en immersion du champ modal, que la méthode géométrique ne prétend évidemment pas reproduire.

Les conditions de validité de cette description géométrique de l'intensité moyenne ne seront pas reprises ici (se reporter par exemple à ref. 1) ; on se bornera à constater qu'elles sont respectées pour des configurations usuelles sonar actif/petits fonds (fréquences de quelques kHz, hauteurs d'eau de 50 à 200 m, distances de quelques dizaines de km).

2. CARACTERISTIQUES TEMPORELLES DU CHAMP

Le temps de propagation associé à un trajet est facilement introduit à partir du temps cyclique :

$$T_\theta = \int_{D_\theta} e^{-1} d\theta$$

d'où on déduit la vitesse moyenne équivalente associée au rayon :

$$v_0 = T_\theta^{-1} D_\theta$$

Le signal temporel en réception est obtenu par recomposition des contributions des différents trajets affectés des retards correspondants :

$$S(t) = r^{-1} \int_0^\theta P_\theta D_\theta^{-1} M_\theta(\theta) (S(t) - r v_0^{-1}) d\theta$$

où $S(t)$ est l'amplitude du signal en émission. Le principe de cette sommation retardée est classique ; on notera que l'on s'affranchit ici de la recherche des rayons propres atteignant le récepteur.

Figure 3 – Enveloppes de signaux $S(t)$ reçus à 20 km pour différentes durées du signal émis $S(t)$.

On donne Fig. 3 la simulation des enveloppes des signaux transmis à une distance de 20 km pour une hauteur d'eau isocèle de 100 m. Le signal émis a une enveloppe en créneau de durée 100 - 300 - 500 ms ; le niveau "1" représente la sommation simultanée de tous les rayons (pour un signal permanent).
On note que seule la durée d’impulsion 500 ms permet d’atteindre le niveau maximal ; les durées d’impulsion plus faibles procurent un écart non négligeable et donc des possibilités moindres de détection. Il est donc souhaitable dans les estimations de portées de remplacer la sommation des contributions de tous les trajets (indépendamment de leur coincidence effective) par la valeur utile :

\[S_r(r, t) = \text{Max} \left(S_r(r, s, t) \right) \]

 où \(S_r(t) \) est donné par l’expression ci-dessus.

L’influence de la distance sur l’allongement du signal en réception est montrée en Fig. 4, où le calcul est effectué pour des distances de 10, 20 et 50 km et une durée d’émission de 200 ms. L’allongement de la trainée aux grandes distances est mis clairement en évidence, du aux retards de plus en plus importants des rayons émis en incidence rasante (et donc peu amortis).

\[r(t - t) = (t - t) v_{0}(v_{0} + v_{e})^{-1} = (t - t) V_{0r} \]

\[B_{0r} (t, t) = I_{50r} V_{0r}^{2} (t - t) \]

 où \(I_{50r} \) est la section efficace pour l’élément de surface ou de fond considéré ; pour un élément de volume, \(I_{50r} \) est à corriger de la hauteur \(dz \) de l’élément.

Par ailleurs si l’on note :

\[J_{0r}(t) = \int_{0}^{T} \exp \left(- (a_{0} + a_{0}) (t - t) V_{0r} \right) \left(V_{0r}^{2} (t - t) \right)^{2} S(t) dt \]

et si l’on exprime \(p_{0}(t) \) et \(p_{0}^{'}(t) \) en fonction des expressions précédentes, il vient en intégrant sur l’ensemble des directions \(\theta \) et \(\theta' \)

\[I_{50}(t) = \int_{0}^{T} \int_{0}^{\pi} M_{0} P_{0} M_{0} P_{0} I_{50r}(t, \theta, \theta') d\theta d\theta' \]

 où les \(M_{0}, P_{0} \) et \(I_{50r} \) sont définis à l’immersion correspondant au type d’élément réverbérant considéré.

Sous les hypothèses supplémentaires suivantes :

- S(t) est constant \((S_r) \) sur \([0, T]\) et nul ailleurs,
- t \(\gg \) T,
- \(I_{50r} \) est décomposable en un produit \(I_{50r} = s_{0} s_{0r} \)
- l’essentiel de l’énergie est contenue dans un secteur angulaire étroit,

on peut écrire l’expression approchée :

\[I_{50}(t, \theta) = S_{r} T^{-1} \psi \left[\int_{0}^{T} M_{0} P_{0} s_{0} \exp (- 0.5 a_{0} v_{e} t) d\theta \right]^{2} \]

 où \(\psi \) est l’ouverture horizontale du faisceau sonar.

Cette expression approchée donne d’excellents résultats pour les configurations courantes d’utilisation de sonar actif par petits fonds, et ceci pour une charge de calcul nettement plus faible que celle nécessaire par un calcul de "rayons propres".

\[R_{50r}(t) = \int_{0}^{T} p_{0}(rt - t) p_{0}(rt - t) B_{50r}(t, t) S(t) dt \]

 où \(p_{0}(t) \) et \(p_{0}^{'}(t) \) sont les pertes de propagation le long des trajets \(\theta \) et \(\theta' \), \(r(t - t) \) est la distance à l’élément réverbérant caractérisé par le coefficient \(B_{50r}(t, t) \) et \(S(t) \) est l’intensité du signal émis.

- Figure 4 – Enveloppes de signaux \(S_r(t) \) reçus à différentes distances, pour un signal émis de 200 ms –

3. NIVEAUX DE RÉVERBERATION

Les niveaux de réverbération sont obtenus à partir de la méthode usuelle des programmes de calcul par rayons (voir par exemple le NISSM II (ref. 5)), mais avec des performances bien meilleures en fiabilité et rapidité de calcul. Si l’on considère un trajet aller-retour jusqu’à un "élément réverbérant" (de surface, fond ou volume) selon les rayons cycliques \(\theta \) et \(\theta' \), l’expression de l’intensité réverbérée s’écrit :

\[I_{50}(t) = S_{r} T^{-1} \psi \left[\int_{0}^{T} M_{0} P_{0} s_{0} \exp (- 0.5 a_{0} v_{e} t) d\theta \right]^{2} \]

 où \(\psi \) est l’ouverture horizontale du faisceau sonar.

Cette expression approchée donne d’excellents résultats pour les configurations courantes d’utilisation de sonar actif par petits fonds, et ceci pour une charge de calcul nettement plus faible que celle nécessaire par un calcul de "rayons propres".

- Figure 5 – Niveaux de réverbération (en traits pleins) de fond (F) et de volume (V) comparés à ceux obtenus par le NISSM II (en tirets) –
On donne Fig. 5 le résultat, obtenu pour une hauteur d'eau de 100 m, du calcul des réverbérations de fond (modèle d'index de McKENZIE (ref. 5)) et de volume (valeur d'index de -100 dB/m²) comparé au résultat du programme NISSM II (en tirets). On constate que l'accord entre les deux méthodes se dégrade quand le temps augmente; ceci est dû à la difficulté du NISSM II à prendre correctement en compte les rayons proches de l'horizontale, en nombre de plus en plus important aux grandes distances (le même phénomène peut d'ailleurs être observé sur les pertes de propagation).

4. DIFFUSION PAR LE RELIEF DE SURFACE

L'influence du relief de surface dû à la houle est le plus souvent traduit par une diminution d'amplitude de chacune des ondes incidentes (coefficient de réflexion des rayons, amortissement en distance des modes propres). Cette approche ne tient pas compte de la diffusion de l'énergie depuis la direction de l'onde incidente vers des directions voisines.

Nous proposons de tenir compte ici de ce phénomène de diffusion angulaire dans la description géométrique de l'intensité moyenne.

Sur un élément de surface (r, r + dr) le rayon cyclique θ perd de l'énergie par diffusion sur les autres directions θ' et par réflexions-fond et absorption; il en reçoit par diffusion à partir des autres rayons θ'. Le bilan énergétique final s'écrit:

\[
\frac{d}{dr} I_{θ}(r) = -I_{θ}(r)(Γ_0 + a_0) + \int_{θ'} I_{θ'}(r')g(θ', θ) dθ'
\]

où θ et θ' sont les angles en surface des rayons θ et θ', a_0 est le décrément en distance, g(θ', θ) est la fonction de diffusion angulaire de la surface, et Γ_0 est défini comme:

\[
Γ_0 = \int_{θ'} g(θ', θ) dθ'
\]

Si l'on exprime l'équation différentielle ci-dessus en fonction du terme A_g(r) de dépendance en distance, il vient:

\[
\frac{d}{dr} A_g(r) = -A_g(r)(Γ_0 + a_0) + (P_0(0) M_0(0) - 1) \int_{θ'} P_0(r') M_0(θ') g_{θθ'} dθ'
\]

En discrétisant les angles en (θ₁, θ₂ + dθ), les [A_i(r)] sont facilement calculés numériquement de proche en proche.

La principale difficulté réside dans la définition de la fonction g_{θθ'}, dont la validité doit être maintenue aux incidences rasantes, ce qui n'assurent pas les modélisations usuelles. Nous avons retenu ici un modèle (d'après BREKHOVSKIKH (ref. 1)) suffisant pour la démonstration, en:

\[
g(θ, θ') = D_θ^{-1} R_θ \cos^4 \left(\frac{θ - θ'}{2} \right) \exp \left(-\frac{\tan^2 \left(\frac{θ - θ'}{2} \right)}{2θ^2} \right)
\]

 où θ est l'écart-type des pentes du relief et R_θ le coefficient de réflexion cohérente défini à partir du nombre d'onde k et de l'écart-type θ du relief:

\[
R_θ = \exp(-2k^2 \sin^2 θ)
\]

On donne en Fig. 6 les pertes de propagation calculées pour une hauteur d'eau de 100 m et une vitesse de vent de 15 nœuds; les courbes en trait plein et en tirets sont obtenues respectivement avec et sans couplage entre rayons; on constate que le calcul sans prise en compte du couplage sous-estime le niveau de façon notable.

- Figure 6 – Influence du relief de surface sur les pertes de propagation : calcul effectué avec (trait plein) et sans (tirets) couplage

Cette approche de l'influence de la diffusion par le relief de surface permet de bénéficier des divers avantages de la description géométrique; elle fournit une alternative intéressante au calcul par modes couplés pour les applications en hautes fréquences.

REFERENCES

[1] L. BREKHOVSKIKH et I. LYSANOV

"Intensity-range relations in oceanographic acoustics", J. Sound Vib. 18, 271-287 (1971)

