METHODES DE DECONVOLUTION EN SISMIQUE REFLEXION MARINE A TRES HAUTE RESOLUTION PAR FAIBLE PROFONDEUR D'EAU

HAMIDI Ridha*, BOUCHER Jean Marc* et BOELLE Jean Luc**

(*) ENSTB, B.P. 832, 29285 Brest cédex
(**) IFREMER, B.P. 70, 29263 Plouzané

Résumé

Dans cette étude de sismique réflexion marine à très haute résolution (THR), par faible profondeur d'eau, la source utilisée est un sondeur de sédiments 2.5 KHz permettant d'avoir une très haute résolution spatiale verticale avec une faible pénétration. Le signal reçu est la convolution du signal source avec la réponse impulsionnelle de la structure géologique. Le but de ce travail est d'effectuer la déconvolution du signal reçu afin de déterminer cette réponse impulsionnelle caractéristique des couches du sous-sol marin. La difficulté principale réside dans la non connaissance du signal source. On procède donc en deux étapes : identifier le signal de source et identifier ensuite la réponse impulsionnelle de la structure géologique. Plusieurs méthodes ont été testées pour modéliser le signal de source : modélisations AR et ARMA et filtrage homomorphique. Le signal source étant modélisé, on utilise cette information pour déconvoluer toutes les réflexions. Deux méthodes sont comparées : l'utilisation des modèles inverses précédents et l'utilisation de la modélisation avec entrée multi-impulsionnelle (MEMI). La combinaison d'un traitement homomorphique ou d'un modèle ARMA à phase mixte et de la MEMI conduisent à des résultats satisfaisants pour la position des impulsions, plus discutables pour la précision en amplitude.

Summary

In shallow water with very high resolution marine seismology of the continental shelf, the recorded signals come from the reflection of an acoustic signal by the different layers of the sub-surface. The source signal used in this work is a mud penetrator at 2.5 KHz which gives a high spatial and vertical resolution with slight penetration. The received signal can be seen as the convolution of the source signal with the impulse response of the geological structure. The aim of this work is the deconvolution of the received signal in order to recover this impulse response. The main problem is that the source signal is generally not known. We proceed in two steps : we identify the source signal, then, we identify the impulse response of the geologic structure. Different methods have been tested to get a model of the source signal : AR and ARMA models and homomorphic filtering. Once the source signal is estimated, this information is used to deconvolve all the reflections. Two methods have been compared : inverse AR and ARMA filters and multipulse modeling. The combination of homomorphic filtering or mixed phase ARMA models and the multipulse modeling gives satisfactory results of the arrival times of the echoes, but some uncertainties remain as to their amplitudes.

I-Introduction et position du problème

Dans le cadre de l'étude du plateau continental, il est indispensable d'avoir une très haute résolution dans la connaissance des différentes couches de sédiments. Pour cela une source sismique est placée à une faible profondeur d'eau (quelques mètres en dessous de la surface libre de la mer).

La source sismique utilisée dans cette étude est le sondeur de sédiments à 2.5 KHz. Le dispositif de réception étant lui-même la source d'émission, on ne considérera que les ondes sismiques qui se propagent verticalement par rapport au plan des couches du sous sol marin et qui sont réfléchies par celles-ci.

On supposera que la structure géologique se comporte comme un système linéaire (chacune des couches sera considérée comme un milieu homogène, isotrope et non dispersif). La trace enregistrée à la surface sera ainsi constituée de la convolution du signal émis par la source avec la réponse impulsionnelle de la structure géologique étudiée. Si on appelle \( s(t) \) le signal à la surface, alors la trace sismique enregistrée au niveau du géophone, dans les conditions idéales de propagation décrites ci-dessus, pourra s'écrire sous la forme :

\[
x(t) = \{ r(t) \} \ast \{ s(t) \} + \{ b(t) \}
\]

(1)

où \( r(t) \), réponse impulsionnelle de la structure géologique, peut s'écrire sous la forme :

\[
[ r(t) ] = \left\{ \sum_{i=1}^{M} r_i \delta (t - \tau_i) \right\}
\]

(2)

Les \( r_i \) sont appelés coefficients de réflexion (y compris multiples, fantômes, etc.) et \( (b(t)) \) est le bruit additif perturbateur.

La figure (1) donne un exemple de trace sismique où l'on remarque les échos dus aux différentes couches du sous-sol.

Fig. 1 Exemple de trace sismique réelle
Le but de ce travail est la mise au point d'algorithmes de déconvolution permettant le traitement de ces signaux afin d'en déduire la structure géologique, i.e., déterminer la profondeur et l'épaisseur des couches à partir de la détermination des temps d'arrivée et des coefficients de réflexion. Sa difficulté principale est que le signal de source est inconnu car il est impossible d'avoir une mesure directe de la signature du sondeur de sédiments qui est à la fois l'émetteur et le récepteur ; de plus cette signature est variable d'un essai à un autre (caractère non stationnaire). On va donc effectuer une déconvolution "aveugle" (sans connaissance du signal de source).

Il est évident que, sans faire d'hypothèses sur les signaux convolus, le résultat de la déconvolution ne sera pas unique car le problème comporte beaucoup plus d'inconnues que de données. On va décrire dans la suite certaines méthodes de déconvolution en prenant le soin de préciser, pour chacune d'entre elles, les hypothèses de base.

II-Déconvolution prédictive

En déconvolution prédictive, on fait les hypothèses suivantes :
- les coefficients de réflexion forment une série aléatoire non corréllée
- le signal de source est à phase minimale
- le bruit additif est blanc

Dans ces conditions, en partant de l'égalité (1), on peut déduire :

\[
\Gamma_x(t) = \sigma^2_x \Gamma_x(t) + \sigma^2_b \delta(t)
\]

(3)

Donc, en l'absence de bruit, la fonction d'autocorrélation de la trace est proportionnelle à celle du signal de source [1] ; les méthodes d'analyse spectrale paramétrique appliquées à la trace peuvent alors fournir un modèle du signal de source.

L'utilisation des méthodes classiques basées sur les modélisations AR (autocorrélation, covariance, Burg, etc.) ou ARMA (Levinson généralisé, approximation de Padé, méthodes des moindres carrés spectraux, etc.) [2] n'ont pas fourni de résultats satisfaisants, essentiellement parce que le filtre et son inverse doivent être stables, ce qui entraîne nécessairement d'avoir des signaux de source à phase minimale. La figure (2) donne un exemple de trace sismique réelle déconvolue par modélisation ARMA à phase minimale.

On en déduit que le signal de source dont on dispose est bien à phase mixte et qu'il faut employer une méthode de déconvolution qui prend en compte ce fait, telle que le filtrage homomorphique.

III-Déconvolution homomorphique

Le système homomorphique utilisé est décrit par le schéma de la figure (3).

Un tel système présente les avantages suivants :
- ce système prend en compte le fait que le signal de source est à phase mixte
- si deux signaux sont combinés par convolution à l'entrée du système, alors le cepstre complexe du signal résultant est égal à la somme des contributions de ces deux signaux
- si l'un des signaux convolus est constitué d'une suite d'impulsions (cas de la réponse impulsionnelle de la structure sondée pour les signaux sismiques) et si en plus il est à phase minimale, alors sa contribution dans le domaine cepstral peut être séparée par simple soustraction du cepstre de la trace.

Le problème posé par ce type de filtrage est que l'utilisation de l'opérateur logarithmique introduit une fonction complexe non holomorphe et il faut alors d'abord estimer le spectre de phase continu avant de procéder à la convolution ; pour cela, on a utilisé l'algorithme des intégrations adaptatives de Tribollet.

III-1 - Algorithme des intégrations adaptatives [3]

Il s'agit d'estimer la phase continue \( \Phi(\omega) \) en intégrant sa dérivée \( \frac{d\Phi}{d\omega} \) calculée à partir des transformées de Fourier de la trace \( x(t) \) et de \( x(t) \) par l'égalité suivante :

\[
\frac{d\Phi}{d\omega} = - \Re \left\{ \frac{T.F.(x(t))}{T.F.(x(t))} \right\}
\]

(4)

On intègre ensuite cette dérivée de la phase ; si le saut de la phase estimé entre deux fréquences consécutives est supérieur à un certain seuil, appelé seuil d'incrémentation, on appelle alors la phase et sa dérivée à une fréquence intermédiaire afin d'avoir une estimation consistante de la phase (sauf de phase inférieure à un second seuil appelé seuil de consistance). Le choix de la valeur numérique de ces deux seuils dépend des signaux traités et de leurs fréquences d'échantillonnage ; il est alors préférable d'avoir un spectre sur-échantillonné afin d'avoir une meilleure estimation de la phase.

III-2 - Algorithme du cepstre différentiel [4]

On a testé l'utilisation du cepstre différentiel qui permet de contourner la difficulté de l'estimation de la phase ; cela consiste à estimer dans un premier temps le cepstre différentiel discrèt défini par

\[
x_d(n + 1) = - \left\{ \frac{T.F.(x(n+1))}{T.F.(x(n))} \right\}
\]

et d'en déduire ensuite le cepstre complexe par:

\[
x(n) = \frac{1}{n} x_d(n + 1)
\]

(5)

(6)

III-3 - Applications

On a préféré l'utilisation de l'algorithme de dérèoulement de la phase qui a donné des résultats plus satisfaisants bien qu'étant sensible au bruit. On a appliqué cette méthode aux données réelles dont un exemple est donné par la figure (1) ; après filtrage passe-haut dans le domaine cepstral on a restitué la fonction de réflexivité donnée par la figure (4).
IV-MODÉLISATION AVEC ENTRÉE MULTI-IMPUISIONNELLE

Le schéma de principe de cette méthode de modélisation est donné par la figure (6). Cette méthode est surtout utilisée dans le domaine de compression de données et l'analyse de la parole [5]. Elle a aussi été employée pour la déconvolution des signaux sismiques [6]. Le bloc "analyse" permet d'estimer le signal de source à partir de la trace sismique ; on pourra alors utiliser l'une des méthodes précédentes : modèles AR, modèles ARMA (qui peuvent dans ce cas être à phase mixte) ou filtrage passe-bas du cepstrum complexe. Une fois le signal de source estimé on cherche à déterminer la fonction de réflectivité \( r(t) \) donnée par l'égalité (2) qui, par convolution avec le signal de source, donne la meilleure estimation de la trace sismique selon le critère des moindres carrés.
Fig. 7 Exemple de trace déconvolue par la méthode de MEMI combinée avec un filtrage homomorphe avec calcul séquentiel des amplitudes des impulsions

On peut améliorer les performances de cet algorithme en utilisant les étapes précédentes pour déterminer les temps d'arrivée uniquement. Une fois que tous les temps d'arrivée ($t_i$) sont estimés, on peut calculer les amplitudes des impulsions en résolvant le système linéaire :

$$R_{xs}(n_i) = \sum_{j=1}^{M} r_j R_{ss}(n_i - n_j)$$  \hspace{1cm} i = 1, \ldots, M \hspace{1cm} (11)$$

Ceci permet, d'une part, d'améliorer le rapport Signal / Bruit de modélisation, et d'autre part d'éviter le problème des doublets (couples d'impulsions de temps d'arrivée très voisins mais de signes opposés), tel qu'on peut le voir sur les figures (9) et (10).

V-Conclusions

On a étudié certains algorithmes de déconvolution utilisés en sismique réflexion classique afin d'en extraire les algorithmes les plus adaptés au cas des signaux de sismique THR. Les méthodes prédictives ne donnent pas de résultats satisfaisants étant donné que le signal de source sismique marine n’est pas à phase minimale ; cependant la modélisation ARMA à phase mixte permet de bien estimer le signal de source si l’ordre du modèle est suffisamment grand.

Le filtrage homomorphique ne permet pas de bien estimer la fonction de réflectivité car étant très sensible au bruit, mais il permet par contre d’obtenir le signal de source à phase mixte. Lorsque ce dernier est connu, la méthode de MEMI permet d’estimer les temps d’arrivée des échos. La combinaison du filtrage homomorphe ou de la modélisation ARMA à phase mixte et de la méthode de MEMI donne des résultats satisfaits dans ce qui concerne les temps d’arrivée, plus discutables quant à la précision en amplitude.

Fig. 9 Exemple de trace déconvolue par la méthode de MEMI combinée avec un filtrage homomorphe avec calcul global des amplitudes des impulsions

Fig. 10 Exemple de trace déconvolue par la méthode de MEMI combinée avec une modélisation ARMA à phase mixte avec calcul global des amplitudes des impulsions

Références