LE TRAVAIL PRÉSENTÉ ICI, S’INSCRIT DANS LE PROLONGEMENT D’UNE ÉTUDE MENÉE SUR LES TEXTURES DANS LES IMAGES. IL CORRESPOND À L’UTILISATION DES RÉSULTATS OBTENUS LORS DE CETTE ÉTUDE DANS LA CONSTRUCTION D’UN NOUVEAU SYSTÈME DE CODAGE M.I.C. DÉRIVÉ DE LA COMPORTE DE TÉLÉVISION NUMÉRIQUE COULEUR À UN DÉBIT DE 34 Mbit/s.

Après un bref rappel des différents résultats obtenus lors de l’étude des textures, étude constituée d’une phase expérimentale (afin de mesurer des seuils différentiels de visibilité) et d’une phase d’analyse des textures par différentes méthodes de caractérisation (afin d’obtenir des paramètres caractéristiques bien corrélés aux mesures expérimentales), nous utilisons les meilleurs paramètres pour adapter à la fois le prédicteur et le quantificateur.

La nouveauté porte également sur le codage des composantes couleur, pour lequel seules les connaissances apportées par l’analyse de la composante de luminance sont mises en œuvre pour choisir le bon prédicteur et adapter la loi de quantification.

Enfin, le rafraîchissement d’un procédé de quantification glissante suivi d’un codage à longueur variable s’est avéré nécessaire pour satisfaire la contrainte de débit tout en conservant l’excellente qualité des images restituées.

SUMMARY

The work presented here is the continuation of a study made on textures in images. It’s the application of found results to the building of a new DPCH Coding scheme for colour television broadcast at 34Mbit/s rate.

After a recall of the different results obtained during texture study, which is divided into two parts, an experimental one (to measure differential visibility thresholds) and another one to analyze textures (in order to extract characteristic parameters well correlated to experimental measures), we use the best parameters to adapt both predictor and quantizer.

The novelty stands also in the chrominance components coding, which uses uniquely the knowledge brought by luminance component analysis, to choose the right predictor and to adapt the quantization law.

Finally, the addition of a shifting quantization process followed by a variable length coder is proving necessary to satisfy rate constraint while having excellent quality for coded-decoded images.

1. INTRODUCTION

Le travail présenté ici a pour objet la construction d’un nouveau système de codage M.I.C. dérivé des signaux de télévision numérique couleur à un débit de 34 Mbit/s.

La contrainte débit/qualité imposée par l’objectif visé nous a amené à définir un schéma de codage entièrement adaptatif compte tenu du fait bien connu maintenant qu’un système M.I.CD fixe ne permet pas d’obtenir des images de très bonne qualité à un tel débit. Dès lors, le problème à résoudre est : comment adapter le système ? ou ce qui revient au même : sur quels paramètres est-il possible de jouer ?

Généralement, les systèmes de codage cherchent à éliminer l’information redondante dans l’image et à autoriser les erreurs de codage
uniquement dans les zones d’image où le système visuel humain ne pourra les détecter. Pour ce faire, ils utilisent des résultats d’expériences psychovisuelles. Malheureusement, de telles expériences n’ont réellement été menées que pour les zones d’image uniformes et sur les contours où les mécanismes mis en œuvre par le système visuel humain sont moins complexes que dans le cas des zones texturées. Pour ces dernières qui représentent pourtant 90% des points d’image, nous n’avons quasiment pas d’information. C’est cette constatation qui justifie la démarche poursuivie tout au long de cette étude.

La première partie correspond à l’étude des textures. Elle constitue le paragraphe 2 ci-après, paragraphe dans lequel nous rappelons les principaux résultats obtenus. Pour plus de détails sur cette partie de l’étude, le lecteur pourra se reporter à [1].

La deuxième étape qui est le prolongement de l’étude des textures correspond à l’utilisation des résultats obtenus sur les textures dans la définition d’un nouveau système de codage. Après avoir présenté le système global ainsi que l’algorithme développé pour la composante de luminance, nous décrivons le mode d’adaptabilité du prédicteur et du quantificateur. Enfin, nous présentons le schéma de codage des composantes de chrominance.

La troisième et dernière partie de cet article correspond à l’élaboration des résultats obtenus en simulation et aux conclusions.

2. RAPPELS DES RÉSULTATS OBTENUS LORS DE L’ÉTUDE DES TEXTURES

2.1. Résultats dans le cas de dégradations purement spatiales

Une première série d’expériences réalisées sur textures non normalisées mais de même valeur moyenne, a montré que le principal facteur ayant de l’influence sur la valeur de l’effet de masquage, est la dynamique locale de la texture mesurée par son écart-type \(\sigma_t \). La mise en correspondance des mesures expérimentales avec les paramètres caractéristiques obtenus par les trois méthodes d’analyse retenues, celles de l’intégrale curviligne (O. BARBA), des histogrammes locaux (G. LOWITZ) et des extrêmes locaux (O.K. MITCHELL), donne de relatifs corollaires corrélations surtout avec les paramètres capables de détecter les orientations privilégiées dans la texture.

Un deuxième facteur jouant sur la valeur du masquage est le degré de corrélation existant entre les orientations privilégiées dans la texture et celles présentes dans la dégradation.

2.2. Résultats obtenus avec des dégradations temporelles

Le stimulus temporel utilisé est un stimulus de bruit blanc gaussien, donc décorrélé par rapport à la texture de fond, ce qui nous permet d’éliminer ainsi un des facteurs ayant d’influence sur les mesures de seuils de visibilité, celles-ci ne dépendant donc plus que de la texture de fond.

Nous avons mesuré le seuil différentiel de visibilité sur quatre textures naturelles (suffisamment différentes pour être représentatives de l’ensemble des textures). Pour chacune d’elles, 3 valeurs d’écart-type \(\sigma_t \) ont été testées. Si on appelle \(\sigma_t \), l’écart-type du stimulus de bruit temporel au seuil de visibilité sur fond uniforme et \(\sigma_f \), la même chose mais sur fond texturé, la figure 1 ci-après représente l’évolution du rapport \(R = \sigma_f / \sigma_t \) pour chaque texture en fonction de \(\sigma_t \).

![Figure 1](image)

L’analyse de cette figure nous conduit à dire qu’il n’y a pas d’effet de masquage dû aux textures avant \(\sigma_t = 10 \). Au-delà, celui-ci croît linéairement avec \(\sigma_t \). On retrouve là le phénomène observé dans le cas de dégradations purement spatiales. Le fait nouveau à souligner est la faible dynamique de l’effet de masquage produit par les textures comparé aux résultats obtenus sur contours.

Le calcul des corrélations donne cette fois encore de bons résultats, particulièrement avec les paramètres caractéristiques fournis par la méthode de l’intégrale curviligne (cf. [1]). Ceci nous permet d’envisager de prédire les valeurs de seuils de visibilité à partir des valeurs de paramètres caractèrestiques. La formule utilisée s’écrit :

\[
\sigma_f = \sigma_t + \rho \left(\frac{(P_T - P_S)}{\text{Var}^{1/2}(AP)} \right)
\]

- \(\sigma_t \) est l’écart-type du stimulus au seuil de visibilité sur fond uniforme
- \(\rho \) est le coefficient de corrélation entre \(\sigma_t \) et \(\text{AP} = P_T - P_S \)
- \(P_T \) est la valeur du paramètre \(P \)
- \(P_S \) est la valeur du paramètre \(P \)
- \(\text{Var} \) est la variance.

L’application de cette formule avec les meilleurs paramètres donne les valeurs prédites consignées dans le tableau I ci-après :

<table>
<thead>
<tr>
<th>Textures</th>
<th>Valeurs expérimentales</th>
<th>Valeurs prédites par (\text{AP})</th>
<th>Valeurs expérimentales</th>
<th>Valeurs prédites par (\text{AP})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquides</td>
<td>0,86</td>
<td>1,09</td>
<td>1,10</td>
<td>1,38</td>
</tr>
<tr>
<td>Chevaux</td>
<td>0,86</td>
<td>1,08</td>
<td>1,07</td>
<td>1,05</td>
</tr>
<tr>
<td>Lambs</td>
<td>0,86</td>
<td>1,08</td>
<td>1,12</td>
<td>2,10</td>
</tr>
<tr>
<td>Opale</td>
<td>0,86</td>
<td>1,08</td>
<td>1,12</td>
<td>2,10</td>
</tr>
<tr>
<td>Harpe</td>
<td>1,17</td>
<td>1,23</td>
<td>1,28</td>
<td>1,36</td>
</tr>
<tr>
<td>Écureuil</td>
<td>1,13</td>
<td>1,23</td>
<td>1,18</td>
<td>1,16</td>
</tr>
<tr>
<td>Lézard</td>
<td>1,16</td>
<td>1,29</td>
<td>1,22</td>
<td>2,00</td>
</tr>
<tr>
<td>Grenouille</td>
<td>1,12</td>
<td>1,25</td>
<td>1,25</td>
<td>2,63</td>
</tr>
<tr>
<td>Poissons</td>
<td>1,24</td>
<td>1,52</td>
<td>1,59</td>
<td>2,06</td>
</tr>
<tr>
<td>Poissons</td>
<td>1,25</td>
<td>1,52</td>
<td>1,41</td>
<td>1,56</td>
</tr>
<tr>
<td>Poissons</td>
<td>1,25</td>
<td>1,44</td>
<td>1,42</td>
<td>2,40</td>
</tr>
<tr>
<td>Poissons</td>
<td>1,24</td>
<td>1,44</td>
<td>1,57</td>
<td>2,98</td>
</tr>
</tbody>
</table>

Tableau I : \(\sigma_f \) prédit et mesure
Etant donné l'application visée, il apparaît clairement que faire uniquement des tests psychovisuels est insuffisant car les notions de qualité d'image et de gêne subjective apportées par les dégradations ne sont pas prises en compte. C'est pourquoi nous avons refait une nouvelle série de tests sur les quatre textures utilisées précédemment afin d'évaluer la qualité des images quand celles-ci sont bruitées temporairement. Dans ce cas, σ'_e mesuré correspond à l'obtention de la note 4.5 (sur l'échelle à 5 notes du CCIR), les notes obtenues par les textures originales (non bruitées) étant ramenées à la note 5. La figure I montre l'évolution du nouveau rapport appelé $R' = \sigma''/\sigma'$ en fonction de σ'_e.

Globalement, il est possible de conclure à un comportement similaire de R par rapport à R. Le calcul de R/R pour les différentes valeurs de σ'_e donne d'ailleurs une valeur quasiment constante de l'ordre de 1.96. Ceci nous permet donc de modifier la formule de prédiction proposée précédemment afin de prédire σ'_e et non plus σ'_o ; la formule (1) devient :

$$\sigma'_o = \sigma'_e \times \text{coeff} = \sigma'_e \times R/R$$ (2)

Le tableau I ci-dessous donne les valeurs de seuils prédites à partir du meilleur paramètre caractéristique σ'_e. L'intégrale curviligne. Ces valeurs sont dans l'ensemble assez bonnes. D'où notre conclusion : l'évaluation de l'effet de masque produit par des textures sur la visibilité des dégradations en utilisant des paramètres caractéristiques des textures, est possible.

La seconde étape est maintenant l'application de ces résultats dans la construction d'un nouveau système de codage MCD Différentiel Adaptatif. C'est l'objet du paragraphe suivant.

3. APPLICATION AU CODAGE MICA

3.1. Présentation du système global

Le schéma de codage proposé pour la composante de luminance Y est présenté sur la figure II ci-dessous.

Figure II : Schéma de codage de la composante de luminance

On retrouve dans ce schéma les blocs classiques constituant un codage MICA : le prédicteur et le quantificateur. L'innovation réside dans la méthode utilisée pour adapter à la fois le prédicteur et le quantificateur. Ceci est réalisé dans le bloc appelé "analyse locale".

3.2. Description de la procédure d'"Analyse Locale"

C'est dans le bloc "Analyse Locale" que sont directement utilisées les résultats obtenus lors de l'étude des textures. On y calcule tout d'abord l'intégrale curviligne selon 4 orientations θ, sur l'intervalle $[0,\pi]$, en utilisant les points d'image de la trame précédente.

A chaque point à coder correspond un vecteur caractéristique $\mu^2 = (\mu_x, \mu_y, \mu_z, \mu_w)^T$ où μ_x est la valeur de l'intégrale selon la direction θ. De ce vecteur, sont extrait 4 paramètres : μ_{max}^2 et l'orientation associée θ_{max}, μ_{min}^2 et θ_{min} sont également utilisés pour calculer un autre paramètre $\text{DSP} = (\mu_{max}^2 - \mu_{min}^2)/\mu_{min}^2$, qui mesure le degré d'isotropie du voisinage local du point à coder. La dernière opération est la classification de ce point selon la valeur des paramètres caractéristiques.

La procédure totale développée est décrite par un algorithme dont la structure est donnée par la figure III ci-après.

Figure III : Structure de l'algorithme d'analyse locale

Cet algorithme, réalisant à la fois l'adaptativité du prédicteur et celle du quantificateur, nous reviennent plus en détails sur la méthodologie utilisée dans le paragraphe suivant.

3.3. Adaptativité du prédicteur et du quantificateur

3.3.1. Cas du prédicteur

Deux cas sont à considérer :

1. Le point à coder est classé en zone uniforme donc par définition, le voisinage local de ce point ne possède pas d'orientation privilégiée. Dans ce cas, le prédicteur est choisi fixe et égal à $P(X) = X$ en utilisant les notations de la figure IV ci-dessous.

Figure IV : Notations utilisées pour la prédiction
2. Le point appartient à une zone de texture ou à un contour. Cette fois-ci, ce sont les valeurs de e_m et e_s qui nous permettent de sélectionner le bon prédicteur parmi 4 prédicteurs fixes orientés:

$$P(X) = A, P(X) = C, P(X) = \frac{A+C}{2} \text{ et } P(X) = \frac{A+D}{2},$$

en appliquant les règles données dans l’algorithme.

3.3.2. Cas du quantificateur

Le principe d’adaptabilité retenu est celui de la compression ou l’expansion d’une seule loi de quantification non linéaire, par un facteur Δ dont la valeur dépend de paramètres calculés lors de l’analyse locale (par opposition à la méthode qui consiste à commuter une loi parmi plusieurs selon la valeur d’un paramètre). Le problème est donc de calculer la valeur de Δ à appliquer pour chaque point à coder. Pour cela, on évalue l’effet de masquage dû au voisinage local en appliquant la formule (2) établie lors de l’étude des textures. Le paramètre utilisé dans le calcul est $w_{m,s}$. La prise en compte du classement du point en zone uniforme, zone de texture ou point contour se fait par l’intermédiaire du paramètre $COEFF$. Celui-ci est plus élevé pour la classe 3 ("contours") que pour la classe 2 ("texture") ou la classe 1 ("isotrope") afin de tenir compte de la dynamique plus importante de l’effet de masquage dans cette classe. Pour chaque point à coder, on obtient donc une valeur de Δ, à laquelle correspond une valeur de Δ sur le facteur de compression ou d’expansion de la loi de quantification. Selon la classe considérée, les valeurs extrêmes de Δ sont :

- zone uniforme $\to 0.5 \leq \Delta \leq 2$
- zone de texture $\to 0.5 \leq \Delta \leq 2.3$
- point contour $\to 1 \leq \Delta \leq 4.5$

3.4. Codage des composantes de chrominance

Les deux composantes de couleur DR et DB sont tout d’abord sous-échantillonnées d’un facteur 3 comme le montre la figure V ci-après :

![Figure V : Sous-échantillonnage des composantes couleur](image)

Les points manquants sont interpolés à partir des points de la trame N-1 et des points codés-décodés de la trame N.

La nouveauté du système proposé réside dans le codage proprement dit. En effet, seules les informations obtenues lors de l’analyse de la composante de luminance, sont utilisées pour coder les composantes couleur. C’est ainsi que le prédicteur choisi pour le codage des composantes couleur a strictement la même forme que celui sélectionné pour coder l’échantillon de luminance correspondant. De même pour la partie quantification, où le facteur Δ utilisé pour compresser ou expander une loi fixé à 6 niveaux, est choisi identique au Δ calculé pour le codage de la luminance.

3.5. Rajouts matériels pour satisfaire la contrainte débit/qualité

À ce stade, le schéma de codage proposé ne satisfait pas la contrainte de débit fixée. C’est ce qui nous a conduit à rajouter tout d’abord un procédé de quantification glissante pour le codage de la composante de luminance. Ce procédé consiste à quantifier l’erreur de prédiction non plus avec une seule loi couvrant une dynamique assez large (d’où un nombre de niveaux élevés : 11 dans notre cas) mais avec un jeu de 7 lois de dynamique réduite (6 niveaux seulement), le choix d’une loi parmi les 7 s’effectuant à partir de la valeur de l’erreur de prédiction. Ce système nous permet de passer ainsi d’un débit de 3.5 bit/point à 2.6 bit/point pour la composante de luminance, moyennant une très faible perte de qualité d’image. Le débit pour les composantes couleur est de 2.6/3 = 0.86 bit/point.

Le débit global reste donc encore supérieur aux limites fixées. D’où l’idée d’utiliser un codage à longueur variable (Huffman) pour la transmission. Le débit fluctue alors entre 2 et 2.4 bit/point pour la luminance et 0.4 à 0.6 bit/point pour la chrominance.

4. RESULTATS ET CONCLUSIONS

Le système complet fournit des images codées-décodées d’excellente qualité pour un débit moyen global de 2.7, 2.8 bit/point. Les photos ci-dessous montrent les résultats obtenus sur une image extraite de la séquence "voiture".

![Photo n° 1 : image de l’original](image)

![Photo n° 2 : image des classes de codage](image)

- en bleu : zones uniformes
- en vert : textures
- en rouge : contours

![Photo n° 3 : image d’erreur de codage](image)

- dynamique expansée d’un facteur 8
- dynamique expansée d’un facteur 8

Un dernier avantage de ce système est sa robustesse aux erreurs de transmission, robustesse due à la procédure d’analyse locale développée. Des résultats plus complets seront montrés lors du Colloque.

BIBLIOGRAPHIE