Onzième Colloque GRETSI - Nice du 1er au 5 Juin 1987

Systèmes de Modulation et Démultiplexation Multidimensionnelle

P. R. Laurent

Thomson-CSF DTC Laboratoire Traitement du Signal
B.P. 156, 92231 Gennevilliers CEDEX

Le présent exposé est consacré à la conceptions et à l'étude de systèmes de transmission où les signaux sont pris dans un espace à plus de deux dimensions (typiquement, 4 ou 8 dimensions). On montre en effet qu'il est possible de choisir, dans ces espaces, des constellations comportant un nombre de points égal à une puissance de deux, et disposés suivant l'arrangement le plus compact possible; ceci permet d'optimiser les performances en présence de bruit blanc Gaussian.

On envisage dans un premier temps une démodulation de type cohérent, puis on adapte le système pour le cas où le signal doit être à enveloppe constante et où seule une démodulation non cohérente peut être utilisée.

Enfin, on montre que l'emploi de codes correcteurs puissants (codes de Reed-Solomon) permet d'atteindre des performances comparables à celles de nœuds binaires classiques, avec toutefois un rapport débit utile/bande environ quatre fois plus élevé.

I. INTRODUCTION

Grâce aux progrès constants de la technologie, on assiste, à l'heure actuelle, à l'apparition de nouveaux concepts en matière de transmission de données.

Une approche classique consiste à concevoir un système de transmission de type binaire (transmettant donc des suites de 0 et de 1), associé à des dispositions destinées à se prévenir contre les inévitables erreurs de transmission (contrôles de parité divers, codes correcteurs genre BCH, Golay, ..., ou codes convolutifs).

Un pas décisif a été franchi par G. Ungerboeck [13] qui a montré qu'il était possible de réunir en un seul concept plus général la modulation d'une autre façon, ce qui permet d'améliorer la fiabilité des liaisons.

Cependant, si l'on se base sur les travaux de Shannon, on saperçoit que la capacité d'un canal ne peut être atteinte que par l'utilisation de signaux pris dans un espace à nombre illimité de dimensions, la décision sur le signal reçu étant globale et non pas fragmentée en une multitude de décisions élémentaires. Malheureusement, la démonstration de cette propriété fondamentale ne conduit ni à la construction de signaux pouvant être utilisés dans les systèmes réels, ni à des méthodes de décision autres que la recherche du maximum vraisemblance, par recherche exhaustive.

Le présent exposé a pour but de montrer que ces principes peuvent être mis en pratique de façon simple et performante, dans le cas de canaux de transmission à bande passante limitée. On considère en effet que le signal émis peut être représenté par un point dans un espace à N dimensions, l'ensemble des points possibles étant répartis à l'intérieur d'une hypersphère de rayon donné, et suivant la disposition la plus dense possible, analoge au passage hexagonal du plan ou au réseau cubique à faces centrées dans l'espace à 3 dimensions [2].

Ce travail porte sur le fait que si un canal ne peut être utilisé que dans le cas d'un signal binaire, alors il est possible de décomposer un signal en plusieurs canaux binaires, en utilisant des méthodes de codage et de décodage appropriées. Ce travail est basé sur des résultats obtenus dans le cadre de la théorie des signaux à grande dimension.

This paper describes conception and performance evaluation of multidimensional data transmission systems. The signal space has typically four or eight dimensions. It is shown that it is possible to find packings containing a number of points which is a power of two, these points being very close to each other in a manner similar to the face-centered cubic lattice in three dimensions. This allows the best possible performance level in the presence of white Gaussian noise.

Finally, it is shown that the use of powerful error correcting codes (Reed-Solomon codes) is very efficient and allows a level of performance comparable to the classical binary systems with a ratio information rate-bandwidth almost four times higher.

II. CONSTRUCTION DE L'ESPACE DES SIGNAUX

2.1 Méthode générale

Une méthode de construction de l'espace des signaux possibles est basée sur la génération de points dans l'espace à N dimensions en partant d'un ensemble central de points définis par un code correcteur binaire à N bits.

Soit alors un mot de code C = (c(1), c(2), ..., c(N)) où c(i) vaut 0 ou 1. En transformant c(i) en 2c(i)-1, on obtient s(i), i-ème coordonnée d'un point S dans l'espace à N dimensions.

Pour un exemple, pour N=3, le code BCH(3,2) (parité simple) comporte les nœuds de code (0,0,0), (0,1,1), (1,0,1), et (1,1,0) qui sont transformés en (-1,-1,-1), (-1,1,1), (+1,-1,1) et (+1,1,-1), coordonnées d'un tétraèdre dans l'espace à 3 dimensions, motif de base du système cubique faces centrées (CFP).

La génération des autres points de l'ensemble se fait par translation de ces points de départ au moyen d'un vecteur dit potentiel, dit (w), où Z = (z(1), z(2), ..., z(N)) avec z(i) entier
relatif. Dans l'espace à 3 dimensions, on géné-
re ainsi le réseau CPC dans son ensemble (figu-
re 1). Un point important à déterminer, puisqu'il
conditionnera l'efficacité du système, est le
nombre de points situés à une distance R de l'ori-
gine, et qui correspondent donc à des sig-
naux différents. Si l'on met les coordon-
ées $s(1)$ d'un point S sous la forme $s(1) = c(1), (1+4.x(1)), x(1)$, cette énergie vaut

$$
E = \sum (1+4.x(1))^2 = N + 8.K.(K \text{ entier})
$$

Le nombre de signaux de même énergie est donc égal au produit du nombre de mots du code
de départ par le nombre de combinaisons de N
etiers de la forme $-1, 1, -7, -3, +1, +5, +9,
...$ dont la somme des carrés est égale à E.

2.2 Espace à 4 dimensions

On cherche à transmettre en une seule fois un
octet d'information les points représentati-
tifs du signal doivent donc être au nombre de
256.

On prend alors comme code de départ le code
de Reed-Muller (4, 3) qui génère dans l'espace à
4 dimensions 16 vecteurs orthogonaux ainsi que
leurs opposés (8 mots/vecteurs/poids au to-
tal, 64 mots).

L'examen de toutes les possibilités montre
que, pour $E=36$, le nombre de points est exacte-
ment égal à 256. Ces points sont répartis sui-
vant un octet appelé D4, réseau équivalent dans
l'espace à 4 dimensions au réseau CPC dans 3
dimensions.

Le tableau 1 donne la liste des valeurs des $x(1)$
correspondant aux différentes possibilités,
rangées dans l'ordre des valeurs absolues
décroissantes. Le nombre total de permutations des $x(1)$ est égal à 32, ce qui
donne bien les 256 points recherchés.

2.3 Espace à 8 dimensions

Cette fois-ci, on cherche à transmettre à
chaque symbole 16 bits d'information.

Le code binaire de départ choisi est le code
Reed-Muller (8, 4) qui génère 8 vecteurs ortho-
gonaux et leurs opposés, soit 16 en tout.

L'ensemble de points générés suivant le
principe exposé en 2.1 est connu sous le nom de
réseau de Gosset, encore une fois le plus dense
possible, mais ici dans l'espace à 8 dimen-
sions.

Une propriété remarquable de ce réseau est
que, lorsque l'énergie E est égale à une puiss-
ance de 2, le nombre de points ayant cette
énergie est aussi une puissance de 2. Le tab-
bleau 2 est l'équivalent du tableau 1, mais en
se limitant aux énergies égales à une puissance
de 2.

Ici, on prendra $E=128$, ce qui donne
$16.4096=65536$ points, correspondant à 16 bits
par symbole.

III PROCESSUS DE DECISION

A la réception, il faut trouver, parmi tous
les 16 bits possibles de 8 ou 16 bits celui qui
correspond au signal le plus vraisemblablement
émis.

Pour ce faire, on tient compte de la méthode
de construction de l'ensemble de points, ce qui
permet de décrire l'algorithme de la façon sui-
vante (voir aussi [41]):

Soient $R=(r(1), r(2), ..., r(N))$ les compo-
santes du signal reçu.

A- On commence par soustraire à R un vecteur
de la forme 4.3 jusqu'à ce que tous les r(i)
soot tels que $-1<r(i)<3$.

B- Pour tous les r(i) tels que $r(i)<2$, replacer r(i) par 2-r(i).

C- Chercher le point de départ (mot de co-
de) Co le plus proche du point ainsi obtenu.

D- Pour tous les indices i ou r(i) a été mo-
difié à l'étape B, changer c(i) en 2-c(i). Co
devient Ce.

Le signal S le plus proche de R est alors
obtenu en additionnant Ce et 4.2, Z étant le
calculé vectoriel à l'étape R.

Dans la présente application, compte tenu du
nombre limité de signaux distincts, il est pos-
sible de détecter des décodages erronés sim-
plement, en examinant la valeur de l'énergie du
signal Sa résultat de la décision: s'il y a une
valeur hors limites, on reçoit une erreur ce
qui permet d'effacer le symbole correspondant.

Dans le cas de la transmission de mots de 8
bits, on créera un effacement lorsque l'énergie
de S sera supérieure à 32; pour des mots de 16
bits, cet sera fait pour une énergie finale
différente de 120.

IV SYSTEME DE TRANSMISSION COHERENT

4.1 Système de modulation (exemple)

On suppose que l'on désire transmettre du
9600 bits/s dans la bande téléphonique, ce
qui peut en modulation à 1200 bauds

Et sur deux voies en quadrature deux sous-porte-

tese. EF: les composantes s(1), s(2), s(3) et

$s(4)$ définissent l'amplitude, à l'instant de

échantillonnage, des signaux présents sur les
voies en phase (1) et en quadrature (0) de la
première sous-porteuse, puis les voies 1 et 0
de la deuxième. Les valeurs s(1) sont les coor-
données de l'un des 256 points de l'ensemble à
4 dimensions décrit en 2.2.

On transmet alors 8 bits par symbole, ce qui
correspond effectivement à un débit utile de
9600 bits/s.

On peut aussi choisir une modulation de qua-

tre sous-porteuses au lieu de 2, modulées sui-

vant le même principe que précédemment à une
toiture de 600 bauds, et en choisissant le
point S de coordonnées $s(1), ..., s(8)$ dans
l'ensemble à 8 dimensions décrit en 2.3.

On transmet cette fois-ci 16 bits par symbo-

le, ce qui correspond encore à 9600 bits/s.

4.2 Système de démodulation

La démodulation se fait après correction des
imperfections de la transmission (égalisation)
on chaune de 2 ou 4 sous-porteuses, et de la fa-
gon cohérente sur chacune d'entre elles.

Les signaux r(i) mentionnés en 3.1 sont les
amplitudes des 2 ou 4 voies I et 0 à l'instant
optimal d'échantillonnage, et sont affectés de
bruit blanc gaussien.

4.3 Performances

On a tracé figure 2 les performances des
deux systèmes (4, 8 dimensions, avec, pour
comparaison, celles d'un système purement bi-
naire qui, dans la bande de fréquences allouée,
n peut ne pas transmettre qu'éviron 2400 bits/s,
sont un débit de base pour ce genre de système,
cohérente sur chacune d'entre elles.

Les performances ont été obtenues par simu-
lation.

Les courbes donnent la probabilité d'erreur
maximale par BIT en fonction de Eb/No, rapport
signal/bruit énergétique par bit, seule quanti-
té permettant de juger de l'efficacité d'un
système de transmission.

Elles donnent aussi un autre fondamen-
tal la probabilité d'effacement, les efface-
ments correspondant aux cas où l'on s'est aper-
çu que la décision était nécessairement erro-
née.

Même si l'on assimile les effacements à des
erreurs, la modulation à 6536 états (17) a des
performances améliorées de 2 dB par rapport au
DSK, et celle à 256 états permet de gagner en-
viron 3 dB supplémentaires.

La perte par rapport au PSK binaire tradi-
tionnel est de l'ordre de 5 à 6 dB au plus, ce qui
est inférieur au rapport des débits utiles
(9600/2400 soit 6 dB).

V SYSTEME DE TRANSMISSION NON COHERENT

5.1 Procédé de transmission (exemple)

On suppose ici que l'on doit transmettre sur
voie radio, avec le meilleur rendement possible
à la portée maximale. Ceci suppose donc que la trans-
mission se fasse à enveloppe constante et que l'on
utilise une modulation angulaire.

On a choisi ici une modulation de phase dif-
férentielle de rythme 1/T bâis. La modulation
est faite de telle sorte qu'aux instants 4nT+1,
4nT+2, 4nT+3 et 4nT+4, la différence de phase
mesurée par le récepteur, \(\Delta可见(t) \), s'écrit
soit proportionnelle à \(s(1), s(2), s(3) \) et
\(s(4) \), respectivement, les valeurs des \(s(i) \)
correspondant à l'un des 256 points dénommés dans
le paragraphe 2.2.

La vitesse de transmission est alors de 8
bit par période de 4T, soit équivalente à cel-
le d'un PSK 4 états de même largeur de bande.

Pour obtenir (par simulation) des résultats
réalistes, on a mis en œuvre une mise en forme
du signal à l'émission avec une pondération de
deblocage est composée d'un cosinus surélévé, qui permet d'avoir
un spectre étroit et l'absence (théorique)
d'interférence entre échantillons successifs.
L'exécution de phase est limitée de telle sorte que
\(\Delta可见(t) \) ne dépasse jamais 180 degrés en
valeur absolue.

De même, côté réception, on a supposé la
présence d'un filtre de Bessel d'ordre 8, et de
bande passante de \(1/T \), suivi d'un limiteur de
filtre de type Butterworth peut aussi être uti-
lisé, mais il nécessite la présence d'un égalisa-
teur pour compenser les distorsions de phase
qu'il introduit).

5.2 Performances

La figure 2 permet de comparer les perfor-
mancess du système décrit ci-dessus à la version
cohérente (voir 4.3).

La dégradation observée est de l'ordre de 4
dB, en ce qui concerne la probabilité d'erreur,
à une fréquence de la probabilité d'effac-
ement en d'autres termes, le système cohérent
est mieux apte à détecter de fausses déci-
sions que son homologue non cohérent.

VI UTILISATION DE CODES CORRECTEURS

Les procédés de transmission utilisés ici
véticulents non pas des bits d'information, mais
plutôt des symboles de 8 ou 16 bits. D'autre
part, on a vu dans les paragraphes précédents
que le procédé de décision était en principe
déterminé par le code et les erreurs et d'effacements
Cette décision erronée donc à générer des

Pour ces deux raisons, il est logique d'en-
visager une amélioration des performances par
l'emploi de codes correcteurs d'erreurs et
d'effacements travaillant sur des symboles de 1
ou 2 octets, tels les codes Reed-Solomon. En
effet, à taux de redondance donné, ils ont un
pouvoir correcteur bien supérieur à celui des
codes BCH et autres, seuls utilisables pour une
transmission de symboles binaires.

On a donc évalué les performances de la
transmission de 64 bits de données (شد en-
dimension, versions cohérente et non cohérente),
asociée à l'utilisation d'un code Reed-Solomon
(255,239,25) capable de corriger 25 erreurs
sans efficacité, 24 erreurs et 2 effacements
... 8 erreur et 50 effacements.
Malgré le faible taux de redondance néces-
saire (20%), le gain en performances est consi-
dérable, comme on peut le voir sur la figure 2,
en tiretés: pour une valeur de Eb/N0 supérieure
e 9 dB en cohérent (12 dB en non cohérent),
la transmission se fait pratiquement sans erreur.
Pour schématiser, dans le cas du système co-
hérent, on peut transmettre sur une voie télé-
phonique indifféremment 2400 bits par seconde
ou 9600 bits par seconde sans consommer davant-
gage d'énergie par bit transmis.

Enfin, il faut signaler que l'emploi de co-
des en blocs n'est pas obligatoire. En effet,
il faut savoir que la constellation de 256
points décrit plus haut peut être partitionnée
en quatre sous-constellations imbriquées con-
portent 64 points chacune. On peut alors envi-
sager d'utiliser les principes de combinaison
modulation/codage exposés dans [1] pour améli-
orer les performances de la liaison.

VII CONCLUSION

Les modulations multi-dimensionnelles sem-
bent représenter une alternative digne d'inté-
rêt dans la gamme des possibilités de combinai-
sions de modulation et de codage nécessaires à
la stabilisation de la transmission d'informa-
tions de type numérique.

Comme on a pu le constater, leur mise en
œuvre nécessite des puissances de cal-
cul à la portée des microprocesseurs de trente-
ment de signal actuellement disponibles, tout
au moins pour les débits usuels.

En conclusion, bien que reposant sur des
principes géométriques très simples, elles per-
mettent une transmission à faible taux d'erre-
urs sur des canaux à bande étroite, et avec
un excellent rendement.

REFERENCES

[1] G. UNGERBOECK, "Channel Coding with Mul-
tilevel/Phase Signals", IEEE Trans. on Infor-
55-67
tific American, January 1984, pp. 116-146
king and Error Correction Codes", Can. Jour. of
Math., Vol. XXIII, No 4, 1971, pp. 710-745
ding Techniques for Codes and Lattices, in-
cluding the Golay Code and the Leech Lattice", IEEE
Trans. on Information Theory, VOL IT-26,
No 1, January 1986, pp. 41-49
Tableau 1: \(x(i) \) pour l'espace à 4 dimensions

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(x_4)</th>
<th>Nombre de Permutations des (x(i))</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>1</td>
<td>4</td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>-3</td>
<td>1</td>
<td>1</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>-3</td>
<td>1</td>
<td>36</td>
</tr>
</tbody>
</table>

Valeurs des \(x(i) \)**

<table>
<thead>
<tr>
<th>(x(i))</th>
<th>Nombre de Permutations des (x(i))</th>
<th>(E)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 1 1 1 1 1 1</td>
<td>1 1</td>
<td>8</td>
</tr>
<tr>
<td>-3 1 1 1 1 1 1 1</td>
<td>0 0</td>
<td>16</td>
</tr>
<tr>
<td>-3 -3 -3 1 1 1 1 1</td>
<td>56 32</td>
<td>64</td>
</tr>
<tr>
<td>5 5 5 -3 -3 -3 -3 1</td>
<td>280 64</td>
<td>512</td>
</tr>
<tr>
<td>5 5 5 5 5 5 5 5</td>
<td>56 128</td>
<td></td>
</tr>
<tr>
<td>-7 -7 -7 -7 -3 -3 1 1</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>9 9 9 9 9 9 9 9</td>
<td>840</td>
<td></td>
</tr>
<tr>
<td>-11 1 1 1 1 1 1 1</td>
<td>8 4096</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 2: \(x(i) \) pour l'espace à 8 dimensions

Figure 1. Réseau CFC

- Traits pleins: probabilité d'erreur par bit
- Tintes: probabilité d'effacement
- Traits mixtes: probabilité de non- ou faux-décodage avec RS (255,200)