Nous proposons et validons cliniquement une méthodologie de traitement numérique des séquences d'images cardiaques, basée sur :

- des techniques statistiques, pour la compression de l'information et la mise en évidence des comportements temporels propres de la séquence (transformations de Karhunen-Loève, Fukunaga-Koontz). L'étude des comportements à l'intérieur du ventricule gauche par exemple permet d'apprécier la localisation et l'intensité d'un trouble de mouvement de la paroi ventriculaire.

- des techniques déterministes pour la délimitation des contours des cavités principales et l'analyse de la cinétique des zones où les cavités se superposent. Région pour lesquelles les méthodes précédentes ne permettent pas une interprétation clinique correcte (perceptron, corrélation, composantes positives et Gram-Schmidt).

Nous proposons et validate a methodology of digital processing of cardiac scintigraphic image sequences including:

- statistical techniques for information compression purposes, as well as the extraction of principal temporal behaviours of the sequences (Karhunen-Loève and Fukunaga-Koontz transformations). By studying these behaviours inside the left ventricle for example it is possible to determine the position and the intensity of wall motion abnormalities.

- deterministic techniques, for the contouring of the main cardiac cavities, and the analysis of the kinetic of the areas where the cavities superimpose ; the areas where the previous methods do not make a concrete clinical interpretation possible (perceptron, correlation, positive components, Gram-Schmidt).
Traitement de séquences d’images scintigraphiques pour la segmentation spatiale de l’analyse temporelle du comportement cardiaque

CARDET JC, BAUD M, VERDENET J, BERTHOUT P, FAIVRE R, DUVERNOY J

1 - MOTIVATION

Nous présentons le travail d’un groupe multidisciplinaire dont l’objectif est de mettre à la disposition des cliniciens des méthodes d’analyse des séquences scintigraphiques cardiaques destinées au passage en routine sur des systèmes en place en milieu hospitalier. Les objectifs sont :

1) La mise en évidence des régimes temporels pour évaluer les troubles de cinématique gradués en hypokinésie, akinésie et expansion paradoxale et leur localisation.

2) La détermination des contours des cavités pour quantifier des paramètres évaluant la performance cardiaque de façon automatique.

3) L’analyse fine de la cinématique dans les zones de superposition des cavités cardiaques ou dans une région où se superposent des zones saines et pathologiques.

2 - METHODOLOGIE

L’exploration isotopique cavitaires cardiaques consiste, après injection d’un tracéur radioactif (globules rouges marqués au Tc 99m) qui ne quitte pas le secteur vasculaire, à déterminer les variations de volume des différentes cavités au cours d’un cycle. Les données enregistrées aux cours d’une seule révolution sont en nombre trop faible. Cet écueil est évité en additionnant les informations provenant de la même phase d’un grand nombre de cycles successifs. Chaque cycle est décomposé en 16 images (64 x 64). Le découpage est synchronisé par le pic de l’onde R de l’electrocardiogramme.

Chaque pixel est considéré comme un vecteur temporel dont les composantes sont les valeurs qu’il prend dans chaque image de la séquence. Les techniques de compression de l’information, de réduction de dimensionnalité et de « clustering » sont appliquées à la séquence considérée comme une collection de vecteurs.

Partant d’une séquence de 16 images scintigraphiques (64 x 64) il s’agit d’arriver à une image unique où en chaque point un puisse donner la part respective des comportements temporels structurant la séquence. Trois remarques en découlent :

- une compression d’information est nécessaire pour passer sans perte de 16 images à 1 image,
- l’identification des comportements temporels est réalisable ou bien par une technique non-supervisée basée sur des descripteurs statistiques, ou bien par une technique supervisée utilisant des prototypes des comportements connus à priori;
- la reconnaissance des comportements temporels pose des problèmes critiques tels que la détection de points singuliers dans des zones homogènes ou de la décomposition optimale d’un pixel d’une zone de superposition.

Les différentes méthodes appliquées présentées dans la section suivante ont pour but de répondre à ces questions. Leur validation clinique sera présentée ensuite.

3 - TRANSFORMATIONS UTILISÉES

Ces transformations visent à construire, par des moyens linéaires ou non, des opérateurs linéaires qui, appliqués à chaque pixel-vecteur, permettent de le classifier.

3.1 - Karhunen-Loève (1) (2)

Les opérateurs utilisés sont les vecteurs propres dominants, \(\psi_k(t_j), (j = 1,\ldots,16) \) de la matrice de covariance de la collection de pixels. On définit les images principales \(A_{jk} \) par projection de chaque pixel \(B_j(t_j) \) sur les vecteurs propres dominants :

\[
A_{jk} = \sum_{j=1}^{16} B_j(t_j) \psi_k(t_j)
\]

(1)

On centre couramment 99 % de la variance des 16 images de la séquence sur les 3 premiers vecteurs propres.

3.2 - Fukunaga-Koontz (3) (4) (5)

On utilise la connaissance à priori des propriétés respectives de deux classes de comportements temporels, par l’intermédiaire de leur matrice de covariance \(C_1 \) (oreilllette) et \(C_2 \) (ventricule). Soit \(\Omega \) la matrice de covariance de la réunion de ces deux classes et \(V \) celle des vecteurs propres de cette matrice. L’opérateur de classification appliqué au pixel \(B_j \) conduit à la projection :

\[
F_{11} = (\Omega^{-1/2} V) B_j \phi_1
\]

(2)

où \(\Omega \) est la matrice des valeurs propres de \(\Omega \) et \(\phi_1 \) le vecteur propre dominant de \(C_1 \). On montre que les projections \(F_{11} \) sont concentrées autour de zéro pour la classe \(Z \) et, simultanément, largement dispersées autour d’une valeur non nulle pour la classe 1, d’où la possibilité de classification automatique par seuillage.

3.3 - Estimation des prototypes de comportement temporel

Ces prototypes sont destinés à la classification supervisée. On part de 3 régions d’intérêt comportant respectivement les pixels :

- \(N_i, i = 1,\ldots, n \) pour la région du bruit de fond
- \(w_i = A_i + N_i \), pour celle de l’oreilllette (\(A_i \) bruitée)
- \(s_i = V_i + N_i \), pour celle du ventricule, \(N_i \) bruité

Un schéma d’estimation par maximum de vraisemblance (6) conduit aux prototypes :

\[
\lambda_i = C_N^{-1} C_{At}^{-1} C_N^{-1} w_i, \quad \hat{C}_N = C_N^{-1} C_{At}^{-1} C_N^{-1}
\]

(3)

et \(C_{At} \) désignent les matrices de covariance des pixels des 3 régions d’intérêt.

3.4 - Perceptron (7)

Appliqué dans le cas du problème à deux classes (oreilllette-ventricule) il consiste en un opérateur \(P \) défini récursivement par apprentissage sur une collection de pixels connus de chaque classe. Il est tel que :

\[
p \cdot B_j > 0 \quad \text{si} \quad B_j \in \text{Classe 1}
\]

\[
p \cdot B_j < 0 \quad \text{si} \quad B_j \in \text{Classe 2}
\]

(4)
avec, à l'étape k de l'apprentissage :

\[P_k = P_{k-1} \]

ou

\[P_k = P_{k-1} + \frac{P_{k-1} B_k}{B_k} \]

suivant que \(B_k \) appartient ou non à la classe 1.

3.5 - Classification par corrélation

On calcule les coefficients de corrélation \(x_j, j = 1, \ldots, 3 \) de chaque pixel avec les estimateurs \(\hat{A}_r, \hat{V}_e \) et \(\hat{N} \) prototypes des comportements temporels de l'oreillette, du ventricule et du bruit de fond. Trois images de corrélation sont ainsi obtenues pour chaque séquence. Les opérateurs sont donc ici les trois estimateurs.

3.6 - Composantes positives

Il s'agit de décomposer chaque vecteur-pixel dans la base des trois comportements temporels répertoriés, en imposant qu'il y ait des composantes positives \(w_j^2 \) sur chacun d'eux :

\[B = w_1^2 \hat{A}_1 + w_2^2 \hat{V}_e + w_3^2 \hat{N} \]

Les poids sont calculés par une méthode itérative non-linéaire, de façon à ce que l'erreur quadratique de reconstruction soit minimale. Les opérateurs utilisés sont encore les trois estimateurs, mais avec une contrainte de positivité qui provient du fait que les trois estimateurs peuvent aussi être interprétés comme des facteurs physiologiques nécessairement positifs.

3.7 - Gram-Schmidt

Du fait de la contrainte de positivité précédente, l'erreur de reconstruction de chaque pixel, même si elle est minimale, peut être considérable. C'est la raison pour laquelle nous avons appliqué le procédé d'orthogonalisation de Gram-Schmidt (8) à la base \(\{\hat{A}_1, \hat{V}_e, \hat{N}\} \) pour obtenir une base orthogonale, à composantes éventuellement négatives, où l'erreur de reconstruction est plus faible. Les opérateurs utilisés sont donc les trois vecteurs ortho-normalisés issus de la base précédente.

4 - RESULTS

L'application des méthodes à un cas de dyskinésie antéro-septale est illustrée figures 1-a à 1-f, où le trouble, notamment dans la partie supérieure du ventricule est bien détecté par KL. Une validation clinique sur 21 patients a été réalisée par des cardiologues. Du point de vue de la précision des contours détectés, la comparaison est donnée tableau 1. La mise en évidence des régions de superposition oreillette/ventricule est analysée tableau 2. La capacité de détecter des «wall motions abnormalities» est présentée tableau 3.

| Tableau 1 |
Contour	Score/21				
F	KL	PERC	GS	COR	PC
7	7	1	20	1	20

| Tableau 2 |
| Aire de superposition |
| Score/21 |
| F | KL | PER | GS | COR | PC |
| 0 | 0 | 3 | 21 | 0 | 21 |

| Tableau 3 |
ANG	F	KL	PER	GS	COR	PC	
Normaux	3	5	3	3	3	3	
Anormaux	18	16	17	15	12	14	14

Sensibilité 88% 94% 83% 66% 77% 77%

5 - CONCLUSIONS

Les différentes méthodes de traitement d'images proposées ont été analysées au point de vue de la validation clinique. Aucune ne permet de satisfaire simultanément les trois critères de qualité retenus. Il convient donc de les associer suivant le type de question posée par le clinicien. Une analyse détaillée des résultats est donnée référence 9.

REFERENCES

Treatment de séquences d'images scintigraphiques pour la segmentation spatiale
de l'analyse temporelle du comportement cardiaque
Processing of scintigraphic image sequences for spatial segmentation and temporal analysis of cardiac behaviour
CARDOT JC, BAUD M, VERDENET J, BERTHOUT P, FAIVRE R, DUVERNOY J