La Detection et Estimation d'une Impulsion en Utilisant la Transformation Discrete de Fourier
The Detection and Estimation of a Single Impulse Using the Discrete Fourier Transform

par J.K. Wolf et T.K. Philips
by J.K. Wolf and T.K. Philips

Département d'Electrical et Computer Engineering
Université de Massachussetts, Amherst, MA 01003

Department of Electrical and Computer Engineering
University of Massachusetts, Amherst, MA 01003

RESUME

Étant donné un vecteur $x = (x_0, x_1, \ldots, x_{N-1})$...
La Détection et l'Estimation d'une Impulsion en Utilisant
Calculated values of this error probability are given in Figure 1 for the following codes: \((N,K) = (4,2), (8,6), (16,14), (32,30) \), and \((64,62) \). The results of a computer simulation of the \((4,2) \) code are also shown for comparison.

The value of the impulse was estimated using the following estimator
\[
\hat{I} = \frac{1}{2} \left(W_N^\ast y[n-2] + W_N^\ast y[n-1] \right)
\]

For the case where \(\hat{m} = m \), we then find that
\[
I = I + \Re(n[m]) + j \Im(n[m]) + \zeta
\]
where both the real and imaginary parts of \(\zeta \) are Gaussian with mean 0 and variance \(\left((N/2)-1 \right)^2 \).

Writing the components of our final estimate of the data vector as \(\hat{x}[j] \), where \(\hat{x}[j] = y[j] \) for \(j \neq \hat{m} \) and \(\hat{x}[j] = y[j] - \hat{I} \) for \(j = \hat{m} \), we find that
\[
\sum_{j=0}^{N-1} \left| \hat{x}[j] - x[j] \right|^2 \left| (\hat{m} = m) \right| = (3N-4)\sigma^2
\]

Similar results can be obtained for the case where \(\hat{m} \neq m \). We can show that \((3N-4)\sigma^2 \) serves as a lower bound on the unconditional mean-squared error between the transmitted and decoded vectors. An upper bound to this unconditional mean-squared error is \((3N-4)\sigma^2 + 2\max \sum P_r(m) \).

4. Discussion

One method of generating a discrete-time, continuous-amplitude sequence with characteristics similar to those described here is to sample a continuous-time band-limited waveform at a rate faster than the Nyquist rate. For finite \(N \), the \(N \) by \(N \) D.F.T. will not have components which are identically zero but the high frequency components will be small.

Alternatively, we could create a discrete-time, continuous-amplitude sequence whose D.F.T. has true zeros by inserting redundant samples in an arbitrary sequence. Starting with \(K \) arbitrary data points, one can always insert \((N-K) \) additional data points so as to force \((N-K) \) consecutive zeros in an \(N \) by \(N \) D.F.T.

This paper only considered the case of the detection and correction of single impulses. If \(T \leq (N-K)/2 \), one can use a variant of a B.C.H. decoding algorithm to correct \(T \) or fewer impulses. Furthermore, a "voting" strategy can be used for the case where \(T \leq (N-K-1) \). These cases are discussed further in reference [1].

References

Acknowledgment

This research was supported by the Air Force Office of Scientific Research under Grant AFOSR 82-0061. The authors gratefully acknowledge the help of Professor Haluk Derin on many aspects of this work.