La Detection et Estimation d'une Impulsion en Utilisant la Transformation Discrete de Fourier
The Detection and Estimation of a Single Impulse Using the Discrete Fourier Transform

par J.X. Wolf et T.K. Phillips
by J.K. Wolf and T.K. Philips

Deaprtement d'Electrical et Computer Engineering
Université de Massachusetts, Amherst, MA 01003

RESUME

Etant donné un vecteur \(x = (x[0], x[1], x[2], \ldots, x[N-1]) \), dont les éléments \(x[i] \) sont des nombres complexes et que la transformation Discrete de Fourier (D.F.T.) du vecteur \(x \) à la propriété suivante: c'est à dire que deux éléments consécutifs également zéro.

Premièrement nous montrons que si \(Y = X + I \delta \) ou

\[
\delta = (0,0,\ldots,0,1,0,\ldots,0)
\]

et \(I \) est un nombre complexe arbitraire, alors le vecteur original \(X \) ne peut être déterminé qu'à partir du vecteur observé \(Y \) (sans

SUMMARY

Given a vector \(x = (x[0], x[1], \ldots, x[N-1]) \) whose components \(x[i] \) are complex numbers. Assume that the Discrete Fourier Transform (D.F.T.) of the vector \(x \) has the property that two consecutive components are identically zero.

First we show that if \(y = x + I \delta \) where \(\delta = (0,0,\ldots,0,1,0,\ldots,0) \) and \(I \) is an arbitrary complex number, then the original vector \(x \) can be uniquely determined from the observed vector \(y \) (without error).
Calculated values of this error probability are given in Figure 1 for the following codes: (N,K) = (4,2), (8,6), (16,14), (32,30) and (64,62). The results of a computer simulation of the (4,2) code are also shown for comparison.

The value of the impulse was estimated using the following estimator

\[\hat{1} = \frac{1}{2}(W_N^H \bar{y}(n-2) + W_N^H \bar{y}(n-1)) \]

For the case where \(n=m \), we then find that

\[I = I + Re(n[m]) + j Im(n[m]) + \mathbb{E} \]

where both the real and imaginary parts of \(\mathbb{E} \) are Gaussian with mean 0 and variance \(\left(\frac{N}{2} - 1 \right)^2 \).

Writing the components of our final estimate of the data vector as \(x[j] \), where \(x[j] = y[j] \) for \(j \neq m \) and \(x[1] = y[1] = 1 \) for \(j = 1 \), we find that

\[\mathbb{E} \frac{1}{N-1} \sum_{j=0}^{N-1} | x[j] - \bar{x}[j]|^2 \mid (x[m]) \mid = (3N-4)c^2. \]

Similar results can be obtained for the case where \(n=m \). We can show that \((3N-4)c^2 \) serves as a lower bound to the unconditional mean-squared error between the transmitted and decoded vectors. An upper bound to this unconditional mean-squared error is \((3N-4)c^2 + 21c c^2 \max_{r} r[R(m)]. \)

4. Discussion

One method of generating a discrete-time, continuous amplitude sequence with characteristics similar to those described here is to sample a continuous-time band-limited waveform at a rate faster than the Nyquist rate. For finite \(N \), the \(N \) by \(N \) D.F.T. will not have components which are identically zero but the high frequency components will be small.

Alternatively, we could create a discrete-time, continuous amplitude sequence whose D.F.T. has true zeros by inserting redundant samples in an arbitrary sequence. Starting with \(N \) arbitrary data points, one can always insert \((N-K) \) additional data points to force \((N-K) \) consecutive zeros in an \(N \) by \(N \) D.F.T.

This paper only considered the case of the detection and correction of single impulses. If \(T \leq \frac{(N-K)}{2} \) one can use a variant of a B.C.H. decoding algorithm to correct \(T \) or fewer impulses. Furthermore, a "voting" strategy can be used for the case where \(T < \frac{(N-K)}{2} \). These cases are discussed further in reference [1].

References

Acknowledgement

This research was supported by the Air Force.
La Detection et Estimation d'une Impulsion en Utilisant
la Transformation Discrete de Fourier

The Detection and Estimation of a Single Impulse Using
the Discrete Fourier Transform