MESURE DE L’ABSORPTION AVEC MOYDELE VISCOELASTIQUE EN GEOPHYSIQUE PETROLIERE

8. BOUCHACHE
J.M. KONATITSCH
8. ESCUDIE

1. Service "Etudes et Recherches"
Societe ELF AQUITAINE
64000 - PAU

2. Service "Traitement du Signal"
ICPI, 25, rue du Plat
69002 - LYON

RESUME

Pour améliorer la détectivité de la méthode de sismique réflexion en prospection pétrolière, on est amené à affiner le modèle représentatif du sous-sol en rajoutant aux paramètres classiques décrivant les couches géologiques (densité, vitesse, épaisseur) des paramètres d’absorption.

En modèle viscoélastique avec mémoire, cette absorption est caractérisée par deux temps de relaxation τ₀ et τ₁ et dépend de la fréquence.

La fonction de transfert h(p,z) du filtre constitué par la couche de terrain HOMOGène d’épaisseur z est calculée dans le domaine de Laplace. L’ordre et la fréquence de coupure d’un tel filtre sont des fonctionnelles simples des paramètres d’absorption τ₀ et τ₁. Nous déduisons alors des méthodes de mesure applicables en sismique haute résolution.

L’estimation automatique des paramètres d’absorption τ₀ et τ₁ connaissant la fonction de transfert d’une couche de terrain donnée est basée sur la méthode des moindres carrés. Le traitement de données réelles montre que le modèle choisi est représentatif des phénomènes physiques observés.

Des mesures de τ₀ et τ₁ ont donc pu être effectuées.

Diverses applications sont envisagées, en fonction de la nature des données dont on dispose. En particulier, on se propose de résoudre le problème de l’“inversion des seismogrammes” en tenant compte de l’absorption.

SUMMARY

ABSORPTION ESTIMATION WITH A VISCOELASTIC MODEL IN PETROLEUM GEOPHYSICS

To improve the resolution of the seismic reflection method in oil prospecting, we are led up to refine the earth-model by adding absorption parameters to classical earth-parameters (density, velocity, thickness).

If we adopt the viscoelastic model, this absorption is characterized by two relaxation time constants τ₀ and τ₁.

The transfer function h(p,z) of the filter constituted with a z thick homogeneous layer, is computed in the Laplace domain. The order and the high cut frequency of such a filter are simple functions of the absorption parameters τ₀ and τ₁. Then, we can derive estimation methods which we can apply in high resolution seisms.

Given the layer transfer function, the automatic estimation of absorption parameters τ₀ and τ₁ is based on the least squares method. Examples using real data show that the chosen model represents well the observed physical phenomena.

Values of τ₀ and τ₁ have been determined using that method.

Various applications are considered, depending on the nature of the data. For example, we intend solving the "seismogram inversion problem" taking account of absorption.

* Ingénieur ICPI, thesis of L'INPG, detached to ELF-AQUITAINE à la suite d'un contrat SKEA(P)-INPG.
INTRODUCTION

L'un des problèmes importants en géophysique est la détermination de paramètres caractérisant le sous-sol dans le but d'essayer de déterminer à distance la structure et la configuration des couches géologiques. Deux sortes de manipulations sont réalisées :

- Pour la première, une source infrasonique, un vibra-
tair par exemple, émet un signal \(G(t) \) en surface et on enregistre également en surface les échos renvoyés par les couches profondes (Trace sismique) [7].

- Pour la seconde, on enregistre un profil sur un site et on enregistre à différentes profondeurs la réponse du terrain au signal \(G(t) \) émis en surface (Carottage sismique ou Profil sismique vertical) [7].

Un modèle ayant été choisi pour représenter la propag-
ation des ondes, l'enregistrement sismique pourra fournir certains renseignements sur la constitution du sous-sol. Le modèle le plus généralement utilisé est le suivant :

- Le sous-sol est supposé stratifié en couches homogènes horizontales, les ondes sismiques sont supposées plans et se propagent verticalement. La loi de Hooke [8] régit le comportement mécanique du milieu : elle postule que les forces appliquées à un solide sont des fonctions linéaires des déformations qu'elles produi-
sent. D'un point de vue énergétique, on admet alors les hypothèses suivantes : le milieu étant considéré comme parfaitement élastique, les forces internes qui y existent ne dépendent que des positions de ses éléments. Il en résulte qu'elles dérivent d'un potentiel, et que le travail qu'il faut dépenser pour produire une déformation se trouve enregistré dans le milieu sous forme d'énergie potentielle, entièrement récupérable lorsqu'on supprime la déformation.

Compte tenu de ce modèle, on mesure la contrainte \(G(t) \) (signal émis) et la réponse \(Y(t) \) au niveau du sol. Le "problème inverse" de la sismique réflexion est alors, connaissant \(Y(t) \) et \(G(t) \) de déterminer la représen-
tion des impédances acoustiques dans le sous-sol. Le problème a été étudié par de nombreux auteurs, tant du point de vue analytique que numérique. Mais malgré les améliorations apportées au traitement mathématique et aux mesures expérimentales, on constate que même lorsqu'un modèle unidimensionnel semble justifié, les résultats deviennent imprécis aux grandes profondeurs. On peut espérer améliorer la précision des résultats, en créant un modèle cernant de plus près la réalité physique, en remplaçant la loi de Hooke par une loi faisant intervenir des termes d'amortissement. [8] [9] [10].

- Notre objectif est alors d'estimer ces paramètres d'absorption à partir de la surface du sol (trace sismique) ou dans un site (Carottage sismique).

Pour ce faire, nous procéderons comme suit :

- étude et exploitation des propriétés analytiques de notre modèle mécanique
- à partir de simulations, recherche de paramètres caractéristiques du milieu qui permettent de remonter aux paramètres d'absorption.

1 - LE MOYEN DE L'ABSORPTION AVEC MODELE VISCOELASTIQUE EN GEOPHYSIQUE PETROLIERE

1.1 - LE MODELE PHYSIQUE

La loi régissant les phénomènes relatifs à la propa-
gation (loi constitutive), est la relation fonctionnelle liant les contraintes et les déformations. On peut donc, pour une gamme réduite de matériaux et pour un domaine d'emploi bien défini, trouver une loi appro-
chée de comportement faisant intervenir un petit nombre de paramètres et représentant correctement les mesures dans ce domaine. Il s'agit de la loi de Hooke, qui a un domaine de validité extrêmement étendu. C'est une loi statique, mais ses emplois, dans des phénomènes faisant intervenir le temps, se justifie cependant lorsque les phénomènes peuvent être considérés comme réversibles.

De nombreuses études expérimentales [8] [9] ont montré que, dans le cas de propagation d'une onde sismique dans le sous-sol sur plusieurs milliers de mètres, on pouvait mettre en évidence une atténuation (diminution d'énergie) et une dispersion temporelle non négligea-
bles. Une façon simple de faire intervenir ces deux phénomènes, et qui conserve la linéarité, est de prendre pour représentation du sous-sol un modèle vis-
coélastique linéaire avec mémoire.

Dans un tel modèle, la relation liant la contrainte \(S(t) \) à la déformation \(\varepsilon \) est de la forme :

\[
S(t) = \int_0^t \varepsilon(t') \cdot \varepsilon(t-t') \cdot dt
\]

\(\varepsilon \) est appelée fonction de relaxation.

L'idée est alors de choisir \(\varepsilon \) cause à s'annuler à l'infini :

\[
\varepsilon(t) = (1 + a \cdot e^{-t/\tau_0}) \cdot t > 0 \text{ avec } \tau_0 > 0 \text{ et } a > 0
\]

Pour \(t = 0 \) et ou \(a = 0 \), on retrouve la loi de Hooke :

\[
d'où : S(t) = \varepsilon(t) + \alpha \cdot \int_0^t e^{-t-t'} \cdot \varepsilon(t-t') \cdot dt
\]

Le deuxième terme peut être interprété comme une con-
tribution à la contrainte due aux déformations récentes (datant au maximum de quelques \(\tau_0 \), les déformations antérieures ayant été oubliées par suite d'un arran-
gement partiel des molécules, ce réarrangement se pro-
suivant dans un laps de temps de l'ordre de \(\tau_0 \).

La forme différentielle de la loi constitutive s'écrit alors :

\[
\tau_0 \cdot \frac{\partial^2 S(t)}{\partial t^2} + S(t) = \varepsilon(t) + \int_0^t \frac{\partial \varepsilon(t-t')}{\partial t} \cdot \varepsilon(t-t') \cdot dt
\]

Le modèle est de la forme :

\[
\tau_0 = 1.47 \text{ ms}
\]

\[
\tau_1 = 1.57 \text{ ms}
\]

1.2 - LE MODELE MATHÉMATIQUE

Nous allons chercher à déterminer la nouvelle équation d'ondes associée à un modèle du sous-sol à une dimen-
sion. Le sous-sol est supposé formé de couches horizontales homogènes ; la profondeur est notée \(z \), le sol étant en \(z = 0 \). La masse volumique \(\rho \) et le module d'élasticité \(\mu \) ne dépendent que de la profon-
deur \(z \).

Considérant un ébranlement longitudinal qui se propage dans le sous-sol, on suppose cette propagation verti-
cale par ondes planes, c'est-à-dire que le déplacement vertical \(u \), à l'instant \(t \), n'est fonction que de la
profondeur z. La déformation verticale s’exprime alors par :

$$ E(z,t) = \frac{\partial u}{\partial z}(z,t) $$ \hspace{1cm} (2)

La composante verticale S de la contrainte dépend aussi uniquement de z et de t et vérifie :

$$ \rho(z) \frac{\partial^2 u}{\partial z^2}(z,t) + \frac{\rho u}{\partial t}(z,t) = \frac{\partial \sigma}{\partial z}(z,t) $$ \hspace{1cm} (3)

L’équation de propagation, associée au système formé par les trois dernières équations, est alors [2] :

$$ \rho(z) \left\{ \frac{\partial^2 u}{\partial z^2}(z,t) + \frac{\partial u}{\partial t}(z,t) \right\} - \frac{3}{\varepsilon}(z) \left\{ \frac{1}{\varepsilon} \frac{\partial^2 u}{\partial z^2}(z,t) + \frac{\partial u}{\partial z}(z,t) \right\} = 0 $$

L’état initial est supposé être le repos et l’équilibre mécanique, il se traduit par :

$$ U(z,0) = \frac{\partial u}{\partial z}(z,0) = S(z,0) = 0 \text{ pour } z > 0 $$

En $z = 0$, on suppose comme l’excitation :

$$ S(z = 0) = -G(t) \text{ pour } t > 0 $$

Nous proposons d’intégrer l’équation de propagation dans le cas où le sous-sol est supposé formé d’un demi-espace infini homogène. Et pour ce faire, nous allons utiliser la transformée de Laplace.

En effet, dans une étude préalable [1] [10], l’application de la notion de Représentation Conjointe en temps et en fréquence aux signaux biologiques avait permis de nous guider sur la voie à suivre pour estimer au mieux ces paramètres.

1.3 - Recherche de l’équation de propagation dans le domaine de Laplace

Reprenons dans le domaine de Laplace les équations 1, 2, 3. Les transformées de Laplace de $U(z,t)$, $E(z,t)$ et $S(z,t)$ seront notées respectivement $u(z,p)$, $e(z,p)$ et $s(z,p)$.

L’équation de propagation régissant $s(z,p)$ s’écrit alors :

$$ q^2 s(z,p) = \frac{1 + p\tau_0}{1 + p\tau_1} \cdot \rho \cdot p \cdot s(z,p) = 0 $$ \hspace{1cm} (4)

On montre facilement que toutes ces grandeurs obéissent à la même équation différentielle. Seules, les conditions initiales sont différentes.

La contrainte $S(t)$ doit vérifier la condition aux limites suivante : $lim S(z) = 0 \text{ pour } z \to \infty$

La solution de (4) est alors :

$$ s(z,p) = -\frac{e}{p} \cdot \frac{1 + p\tau_0}{1 + p\tau_1} \cdot \frac{\sqrt{\varepsilon \mu}}{\varepsilon} $$

g(p) est la transformée de Laplace de la contrainte au niveau du sol ($z = 0$).

L’expression de la fonction de transfert $h(z,p)$ du filtre constitué par la couche de terrain de hauteur z caractérisée par ρ, μ, τ_0, τ_1 est donc :

$$ h(z,p) = e^{p\tau_0} \cdot \frac{1 + p\tau_0}{1 + p\tau_1} \cdot \sqrt{\frac{\varepsilon \mu}{\varepsilon \mu}} $$

2 - Étude dans le domaine de Fourier

2.1 - Le filtre est à minimum de déphasage

La fonction $h(p,z)$ n’a ni pôle, ni zéro dans l’ouvert du plan p tel que $Re(p) > 0$; elle est donc holomorphe dans \mathbb{D}. L’original de Laplace $H(t)$ réponse impulsionnelle du filtre est une réponse causale, ce qui est physiquement évident vu les conditions de propagation.

$h(p,z)$ est donc une fonction de transfert à minimum de déphasage [3].

Cette dernière propriété assure que :

$$ \log h(v,z) = L(v,z) + i \phi(v,z), \text{ p = i } v $$

est elle-même holomorphe dans \mathbb{D}.

$L(v,z)$ est lié par transformée de Hilbert avec $\phi(v,z)$. Ainsi, le filtre est entièrement déterminé par la connaissance de $L(v,z) = \log |h(v,z)|$.

2.2 - Calcul analytique de la courbe d’absorption

Après décomposition de $h(p,z)$ en module et phase et en se plaçant en régime harmonique ($p = 2i\nu$), on obtient l’expression analytique lin $M(\nu) = L(\nu)$ de la courbe d’absorption d’une couche de terrain caractérisée par les paramètres τ_0, τ_1, ρ, μ, et par un temps de parcours unité de une seconde : $\tau = 1$.

$$ V = \sqrt{\frac{\tau_1}{\tau_0} \cdot \frac{\varepsilon\mu}{\rho}} $$

représente la vitesse maximale de propagation.

$$ [h(p,z)]_p = 2i\tau_1 = M(\nu) \cdot e^{i\phi(\nu)} $$

$X = 2\pi\nu \cdot \sqrt{\tau_0} \cdot \tau_1$ est une variable réduite.

$$ L(\nu) = -\sqrt{\varepsilon \mu} \cdot v \cdot \left(\frac{\tau_0}{\tau_1} + \nu^2 \right)^{1/2} $$

$$ \cdot \left[1 + x^2 \left(\frac{1}{\tau_0} + \frac{\tau_0}{\tau_1} + x^2 \right)^{1/2} - 1 - x^2 \right]^{1/2} $$

Pour que les unités soient des décibels, on passe en logarithmes décimaux.

$A(\nu) = 20 \cdot (\log e) \cdot L(\nu)$

2.3 - Coefficient de qualité, vitesse de phase et absorption

Le coefficient de qualité Q du milieu est défini comme le quotient de l’énergie moyenne stockée W sur l’énergie perdue par cycle ΔW [11].

Compte tenu de notre modèle, Q a pour valeur :

$$ Q = 4\pi \cdot \frac{W}{\Delta W} = \frac{1}{\tau_1 - \tau_0} \cdot \frac{1 + 4\pi^2\nu^2}{\tau_0} \cdot \tau_1 $$

A une faible absorption, correspond une forte valeur de Q. La vitesse de phase $V_\phi(\nu)$ va permettre de mesurer la dispersion en fréquence. $V(\nu)$ est la vitesse de phase relative. En utilisant la variable réduite x, il vient :

$$ F(x) = \frac{V_\phi(\nu)}{V_\phi(0)} \cdot \sqrt{2} \cdot (1 + \frac{\tau_1}{\tau_0} \cdot x^2) \cdot \frac{1}{2} $$

$$ \cdot \left[1 + x^2 \left(\frac{1}{\tau_0} + \frac{\tau_0}{\tau_1} + x^2 \right)^{1/2} + 1 + x^2 \right]^{1/2} $$

F est une fonction croissante dont les limites sont :

$$ F(0) = 1 \text{ et } \sqrt{\frac{\tau_1}{\tau_0}} \text{ pour } x = \infty $$

Soit $G(\nu) = V(\nu) \cdot \frac{1 + 4\pi^2\nu^2}{\tau_0} \cdot \tau_1 \cdot \sqrt{\frac{\tau_1}{\tau_0}}$
En faisant intervenir \(Q(v) \) et le temps de parcours \(T = \frac{1}{\nu} \), l'expression de \(L(v) \) s'écrit alors :

\[
\begin{align*}
L(v) & = - T \cdot \frac{Q(v)}{Q_0(v)} \cdot G(v) \\
L(v) & = - \pi \cdot \nu \cdot T \cdot \frac{Q(v)}{Q_0(v)}
\end{align*}
\]

L'étude des variations de \(G(v) \) montre que cette grandeur varie peu. En effet, c'est une courbe décroissante dans \(\nu^2 \) dont les limites sont les suivantes :

\[
\lim_{\nu \to \infty} G(v) = 1
\]

\[
G(0) = \sqrt{\frac{1}{1 + a}} = 1 + a = 1 + \frac{a}{2}, \quad \text{a petit}
\]

\(a \) est compris entre 0.01 et 0.1 pour les matériaux courants.

2.4 - Étude numérique

L'étude analytique des variations de \(L(v) \) en fonction de \(\nu, \nu_0, \tau_1 \) n'est pas aisée. C'est pourquoi nous avons mené une étude numérique pour les valeurs suivantes :

- \(\nu \) varie de 10 Hz à 250 Hz par pas de 1,
- \(\nu_0 \) varie de 1 à 1.9 pour \(\tau_1 \) fixé à 2,
- \(\tau_1 \) varie de 1.55 à 2 pour \(\tau_0 \) fixé à 1.5.

Nous traçons en échelle logarithmique les courbes représentant l'absorption en fonction de \(\nu \) (figures 1 et 2).

Nous avons alors établi les deux lois approchées suivantes, la troisième étant une relation certaine.

- Ordre du filtre :
 \[N = \frac{a}{\tau_0} (a - b_\nu); \quad \text{a et b constantes connues.} \]
- Fréquence de coupure à -3 décibels :
 \[\nu_c = \frac{k}{\tau_1 - \tau_0}; \quad k \text{ constante connue.} \]
- Point d'inflexion :
 \[\nu_i = \frac{1}{2\pi \nu \tau_0 \tau_1}. \]

La mesure de ces grandeurs à partir d'un enregistrement permettrait ainsi la détermination des paramètres d'absorption. Cependant, la mesure de ceux-ci suppose la connaissance des spectres des signaux enregistrés au-delà de 100 Hz, ce qui est rarement le cas en l'état actuel des choses, les mesures sismiques conventionnelles n'ayant guère au-delà de 60 Hz.

3 - ESTIMATION AUTOMATIQUE DES PARAMÈTRES D'ABSORPTION

3.1 - Analyse du problème

L'expression de la courbe d'absorption s'écrit, en négligeant, pour un temps de parcours unité, de la façon suivante :

\[
L(v) = -\frac{1}{2} \cdot \frac{4\pi^2 \nu^2}{1 + 4\pi^2 \nu^2} \cdot \frac{\tau_1 - \tau_0}{\tau_0 \cdot \tau_1} \cdot G(v)
\]

Pour les matériaux courants, l'approximation \(G(v) = 1 \) est licite.

\[
L(v) = L_1(v) = -\frac{1}{2} \cdot \frac{4\pi^2 \nu^2}{1 + 4\pi^2 \nu^2} \cdot \frac{\tau_1 - \tau_0}{\tau_0 \cdot \tau_1}
\]

Pour \(L_1(v) \neq 0 \) (i.e., pour \(v \neq 0 \)) - on n'a jamais accès à la mesure en \(v = 0 \) - on peut écrire :

\[
L_1(v) = \frac{2}{\tau_0 - \tau_1} \cdot \frac{4\pi^2 \nu^2}{(1 + 4\pi^2 \nu^2) \cdot \tau_0 \cdot \tau_1} = B_1(4\pi^2 \nu^2)
\]

Soit \(y = 4\pi^2 \nu^2, P = \tau_0 \cdot \tau_1, D = \tau_1 - \tau_0, \) il vient :

\[
B_1(y) = -\frac{2}{D} (1 + P \cdot y)
\]

Le problème qu'on pose de résoudre peut donc se ramener au suivant : étant donné une courbe expérimentale \(B_1(y) \) obtenue à partir d'une section sismique brute \(\delta \) d'un carottage sismique, nous voulons l'ajuster à \(B_1(y) \) pour en extraire \(D \) et \(P \).

3.2 - Méthode d'estimation

Nous connaissons la relation théorique liant \(B_1 \) à \(y \). \(y \) est une variable à valeurs connues, tandis que \(B_1 \) est une quantité mesurable, la mesure étant entachée de bruit additif.

Notre problème est donc de déterminer au mieux les paramètres de la droite de régression, le bruit \(B \) étant supposé Gaussien, centré et de variance \(\sigma^2 \) inconnue.

Cependant, \(L(v) \) est connu à une constante additive près, les signaux enregistrés étant toujours normés au cours des divers traitements subis.
IL vient : \[y = \frac{y}{\text{Lexp}} (y) - K = B(y) \]
et : \[B(y) = \frac{-1}{D} (1 + P_{y}) \]

Il est donc indispensable de connaître K, ou au moins d’en avoir une estimation correcte.

Pour cela, on va fixer K = K0 et estimer D et P ; puis on fait varier K de 1 à 20 népers. On choisit la valeur de K qui minimise l’erreur quadratique.

La résolution du système en \[v = 1, \]
\[w = 0 \]
\[\text{et} \]
\[\vartheta = \text{instante} \]
\[\text{est} \]
\[\text{immédiate} : \]
\[\{ 1, \vartheta = \varrho \} \]
\[\{ 1, v = \varrho \} \]

\[\vartheta \] et \[\varrho \] sont en fait 2 variables aléatoires liées par D et P :
\[\vartheta = \varrho + b1 \]
\[\varrho = \vartheta + b0 \]

Cependant, si on remarque que les écarts-types de \[b0 \]
et \[b1 \] sont respectivement très petits devant \[v \] et \[\vartheta \], on pourra ici considérer \[\vartheta \] et \[\vartheta \] comme des variables certaines, d’où :
\[\vartheta = \frac{\vartheta}{D} + \frac{\vartheta^2 + 4b}{2} \]
\[\vartheta = \vartheta - \frac{\vartheta^2}{D} \]

3.3 - Introduction de la correction tenant compte de la vitesse de phase

L’estimateur précédent de \[\vartheta \] et \[\vartheta \] a été construit à partir d’un modèle approché et non à partir du modèle théorique. Il s’agit alors de tendre vers le modèle théorique en utilisant les valeurs de \[\vartheta \] et \[\vartheta \] qui auront été fournies par l’estimateur précédent.

En effet, on a :
\[L(v) = L1(v) \]
\[G(v) \]

En pratique, on calculera \[G(\vartheta, \vartheta, v) \] et on se ramènera à \[L1(v) \] par division de \[L(v) \] par \[G(v) \]. Les données ainsi obtenues seront réintroduites dans l’estimateur précédent.

On bouclera ainsi jusqu’à ce que l’erreur quadratique moyenne entre la courbe expérimentale et la courbe théorique calculée par \[\vartheta \] et \[\vartheta \] soit minimum, l’expérience ayant montré que cet estimateur converge rapidement (moins de cinq itérations).

3.4 - Traitement de données synthétiques

Les courbes \[L(v) \] calculées avec les vraies valeurs de \[\vartheta \] et \[\vartheta \] d’une part et les valeurs estimées \[\vartheta \] et \[\vartheta \] d’autre part sont confondues dans le domaine spectral considéré.

La précision d’estimation de \[\vartheta \] et \[\vartheta \] sera d’autant plus grande que la bande fréquentielle sera plus large pour un pas d’échantillonnage donné.

Pour une bande spectrale \[B \] donnée et à une erreur quadratique \[\varepsilon \] donnée, il existe des classes d’équivalences de couples \((\vartheta, \vartheta) \) correspondant à la même courbe d’absorption.

Si nous disposerions de données "propres" enregistrées, par exemple un carrottage sismique (ou un Profil sismique vertical) dont la source d’émission est un canon à eau, cet outil permettra la caractérisation des couches de terrain à l’aide des paramètres d’absorption estimés.

Il permettra d’autre part d’éliminer l’effet d’absorption de façon à ne plus avoir que des réflexions pures sur les sections sismiques. Les horizons géologiques deviendraient alors plus visibles (gain en résolution, amélioration des corrections de phase).

3.5 - Traitement de données réelles

3.5.1 - Obtention de données

Lors d’une campagne sismique effectuée dans la région de la province de la province (qui convient), des enregistrements de tels dynamiques ont pu être obtenus dans de bonnes conditions. Après traitement des données (estimation du signal et du bruit à une profondeur donnée par des méthodes statistiques) et après correction d’appareillage, on est en mesure d’estimer les signaux reçus après différentes épaisseurs de terrain traversé (trajectoires aller-retour). [6]. Le domaine spectral considéré (20 Hz - 60 Hz) correspond aux fréquences pour lesquelles la réponse est physiquement significative (linéarité de la chaîne de mesure, rapport signal sur bruit compatible avec la dynamique).

Le contenu fréquentiel du signal sismique S est fonction du signal émis en surface (dynamite) et des caractéristiques d’absorption du terrain traversé.

Ainsi, en déterminant une estimation moyenne des spectres des signaux reçus à différentes profondeurs \(z \), nous serons en mesure, par division spectrale, d’estimer les courbes d’absorption pour chaque couche de terrain \([0, z] \). En effet, lors de cette expérience, le signal d’émission a été enregistré et corrigé de tous effets parasites, ce qui n’est pas toujours le cas en sismique pétrolière.

3.5.2 - Résultats

On calcule l’absorption causée par une couche de terrain comprise entre la cote \(z = 0 \) et les cotes successives \(z1, z2 \ldots z6 \). Ces couches ne sont donc pas jointives, mais se contiennent l’une, l’autre.

Les résultats en fonction de la profondeur sont les suivants :

<table>
<thead>
<tr>
<th>Prof.</th>
<th>(\vartheta_0)</th>
<th>(\vartheta_1)</th>
<th>(\varepsilon)</th>
<th>(z)</th>
<th>Erreur</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>.675</td>
<td>1.237</td>
<td>1.333</td>
<td>.077</td>
<td>27</td>
</tr>
<tr>
<td>H2</td>
<td>1.4</td>
<td>.949</td>
<td>1.007</td>
<td>.06</td>
<td>34</td>
</tr>
<tr>
<td>H3</td>
<td>2</td>
<td>.857</td>
<td>.906</td>
<td>.057</td>
<td>36</td>
</tr>
<tr>
<td>H4</td>
<td>2.6</td>
<td>1.187</td>
<td>1.233</td>
<td>.038</td>
<td>53</td>
</tr>
<tr>
<td>H5</td>
<td>3.2</td>
<td>.998</td>
<td>1.037</td>
<td>.039</td>
<td>52</td>
</tr>
<tr>
<td>H6</td>
<td>3.9</td>
<td>2.05</td>
<td>2.1</td>
<td>.023</td>
<td>88</td>
</tr>
</tbody>
</table>

Les figures suivantes représentent les courbes d’absorption des couches correspondant à ces profondeurs exprimées en temps de parcours.
Les résultats montrent que le coefficient de qualité Q_m (voir remarque ci-dessous) est une fonction croissante de la profondeur. (On s'est toujours ramené à une couche de terrain correspondant à un temps de parcours de une seconde).

Les géophysiciens expliquent cela par le fait que le terrain se compactant avec la profondeur du fait de la pression d'enfoncement, il deviendra plus élastique et donc moins absorbant.

Les couches caractérisées par H1, H2 ... H6 ne sont pas joignitives, mais se contiennent l'une, l'autre.

Remarque : Nous avons vu que le coefficient de qualité d'un milieu viscoélastique était fonction de la fréquence. La courbe $Q(v)$ présente un "mâle" autour de son minimum dans la bande 80-200 Hz pour les valeurs de τ_0 et τ_1 correspondant aux matériaux courants. La connaissance de ce minimum Q_m nous apporte une première information sur la nature de la roche.

CONCLUSION

Les études sur l'absorption présentent actuellement un grand intérêt dans la mesure où elles permettent de mieux cerner la réalité physique des phénomènes et d'en tenir compte dans nos traitements. Dans l'immediat, nos résultats nous permettent par une préestimation de ces paramètres d'alimenter des traitements fondés sur la notion d'"inversion directe des sismogrammes" par intégration de l'équation des ondes (l'étude théorique a été menée en collaboration avec l'INRIA et l'IFP [11]). L'objectif est, connaissant le signal émis et la ou les réponses du sous-sol, de déterminer directement la répartition des impédances acoustiques au sein de ce dernier (figure 4).

L'estimation des paramètres d'absorption permettra d'autre part, par filtrage inverse, d'améliorer le pouvoir de séparation en profondeur.
BIBLIOGRAPHIE

