Une propriété de Markov est définie pour des processus à deux indices. Cette définition, directement inspirée du cas à un indice, est compatible avec celles déjà données pour des champs gaussiens. On montre l'existence et l'unicité de la solution d'une équation différentielle stochastique relative à des processus à deux indices. Les conditions, assurant la propriété de Markov, restent encore à préciser en général. On propose un cas particulier d'équation où le caractère Markovien de la solution est conjecturé.

For two-parameter processes a Markov property is defined. This definition is directly inspired by the one parameter case and is compatible with the ones already used for gaussian fields. A stochastic differential equation for a two parameter process is considered and the existence and uniqueness of its solution are proved. It is not yet known under which conditions the solution of such a general equation is Markovian. Nevertheless a particular type of stochastic differential equation is proposed for which the Markov property is conjectured.
1. INTRODUCTION

Le définition d'une propriété markovienne pour les processus à deux indices a soulevé un certain nombre de difficultés conceptuelles dues à la partie de la relation d'ordre total en passant de la droite au plan. La tentative faite par CAIRLOI dans (5) ne semble pas avoir abouti à un concept de propriété markovienne facilement manipulable. Par contre, dans le cas des processus gaussiens, les définitions équivalentes données par NUALART et SANZ dans (1) et KOREZLIOGLU dans (2) ont permis de faire des extensions immédiate des propriétés des processus gaussiens markoviens à un par mètre. On définit ici une propriété markovienne pour les processus à deux indices qui semble être une généralisation raisonnable de la propriété markovienne pour les processus à un indice.

Au paragraphe 3, on donne la définition de la propriété markovienne pour des processus à deux indices, et on étudie rapidement les conséquences de cette définition : on montre que celle-ci est équivalente à celle qui a été proposée par NUALART et SANZ dans (1) et qu'elle confirme avec celle de KOREZLIOGLU dans le cas gaussien. Une étude détaillée sur la propriété markovienne est publiée dans (6). Au paragraphe 4, on étudie l'existence et l'unicité d'une équation de diffusion à deux paramètres qui a été proposée par J. SZPIRGLAS, et on conjecture une forme particulière de cette équation dont la solution serait un processus markovien.

2. PRELIMINAIRES

Dans toute la suite, \(z = (x,y) \) représentera un point générique de \(\mathbb{R}^2 \). Étant donnés deux points \(z \) et \(z' \), on écrit \(z < z' \) pour \(x < x' \) et \(y < y' \), \(z < z' \) pour \(x < x' \) et \(y > y' \), et \(z < z' \) pour \(x < x' \) et \(y > y' \). On désigne par \(z z' \) le point \((x,y') \), par \(z z' \) le point \((x',y) \) et par \(z z' \) le point \((\text{sup}(x,x'),\text{sup}(y,y')) \). On note \([z]_2 \) le rectangle \(\{u \in \mathbb{R}^2 : u < z \} \) et on pose \(R_z = \mathbb{R}^2 \setminus [z]_2 \). Tous les processus considérés ici seront indexés par \(\mathbb{R}^2 \) et seront définis sur un espace probabilisé \((\Omega, \mathcal{F}, \mathbb{P}) \).

Le théorème de l'intégration stochastique développée dans (3) et (4) est basée sur une filtration \(\mathcal{F} = (\mathcal{F}_z)_{z \in \mathbb{R}^2} \) de sous-tribus de \(\mathcal{B} \), vérifiant les conditions ci-dessous:

(F1) \(\mathcal{F} \) est croissante (i.e. \(z < z' \Rightarrow \mathcal{F}_z \subset \mathcal{F}_{z'} \)).

(F2) \(\mathcal{F} \) a des sous-tribus de \(\mathcal{B} \) négligeables de \(\mathcal{F} \).

(F3) \(\mathcal{F} \) est continue à droite (i.e. \(\mathcal{F}_z = \bigcup_{z < z} \mathcal{F}_{z'} \)).

(F4) Si on pose \(\mathcal{F}_{z} = \mathcal{F}(X_{z}), \mathcal{F}_{z} = \mathcal{F}(X_{z}) \), \(\mathcal{F}_z \) et \(\mathcal{F}_{z} \) sont conditionnellement indépendantes par rapport à \(\mathcal{F}_z \).

On utilisera la terminologie suivante en ce qui concerne les différents types de filtration relatifs à la filtration \(\mathcal{F} \). \(\mathcal{F}_z \) sera appelé la filtration strict jusqu’au point \(z \), \(\mathcal{F} \) le Passé horizontal, \(\mathcal{F} \) le Passé vertical, et \(\mathcal{F}_z = \mathcal{F}_z \) le Passé large.

En ce qui concerne la filtration \(\mathcal{F} \), on étendra l’ensemble d’indices au domaine \(D = \{x \geq 0\} \) en posant \(\mathcal{F}_x = (\Omega, \mathcal{F}, \mathbb{P}) \), \(x \geq 0 \). On dénote le processus \((X_{z}, z \in \mathbb{R}^2) \) à \((X_{z}, z \in \mathbb{R}^2, 0) \) en posant \(X_0 = 0 \) \text{V} \text{z} \in \mathbb{R}^2\).

Pour un processus \(X = (X_{z}, z \in \mathbb{R}^2) \) on pose

\[X_{[z]} = X_2 \cdot X_{z} \cdot X_{z} \cdot X_{z} \cdot X_{z} \cdot X_{z}. \]

On dit qu’un processus \((X_{z}, z \in \mathbb{R}^2) \) est intégro-différentiel, est :

- une martingale forte si \(X \) est \(\mathcal{F}_z \)-adapté et, \(\mathcal{F}_z \rightarrow \mathcal{F}_x, E(M[M_z, z] \mid \mathcal{F}_z) = 0 \).

- une martingale si \(\mathcal{F}_z \) est \(\mathcal{F}_z \)-adapté et, \(\mathcal{F}_z \rightarrow \mathcal{F}_x, E(M[M_z, z] \mid \mathcal{F}_z) = 0 \).

une 1-martingale (ou martingale horizontale) si \(X \) est \(\mathcal{F}_z \)-adapté et,

\(\mathcal{F}_z \rightarrow \mathcal{F}_x, E(M[M_z, z] \mid \mathcal{F}_z) = 0 \).

- une 2-martingale (ou martingale verticale) si \(X \) est \(\mathcal{F}_z \)-adapté et,

\(\mathcal{F}_z \rightarrow \mathcal{F}_x, E(M[M_z, z] \mid \mathcal{F}_z) = 0 \).

- une martingale en fini si \(\mathcal{F}_z \) est \(\mathcal{F}_z \)-adapté et,

\(\mathcal{F}_z \rightarrow \mathcal{F}_x, E(M[M_z, z] \mid \mathcal{F}_z) = 0 \).

On montre qu’une martingale forte est une martingale : qu’une martingale est une 1 et 2-martingale, et qu’une 1 et 2-martingale adaptée est une martingale : enfin qu’une 1-martingale, ou une 2-martingale, est une martingale faible.

Soit \(B \) une mesure aléatoire gaussienne centrée définie sur les boréliens de \(\mathbb{R}^2 \) telle que \(E(B(A)) = |A| \), où \(|A| \) désigne la mesure de Lebesgue du borélien \(A \). Un processus \(X = (X_{z}, z \in \mathbb{R}^2) \) est la version continue du processus défini par \(B_z = B(\mathbb{R}^2) \).

On démontre que la filtration naturelle complétée de \(B \) vérifie les propriétés (F1)-(F4) définies plus haut.

On se réfère à CAIRLOI et WALSH (3), et WONG et ZAKAI (4), pour la définition des intégrales stochastiques par rapport au processus gaussien à \(\mathcal{F}_z \) filtration naturelle.

Si \(f(z, z) \) est un processus mesurable, \(\mathcal{F} \)-adapté, tel que \(\int_{\mathbb{R}^2} E[f(z)]^2 \) \(dz < \infty \), alors \(\int_{\mathbb{R}^2} |f(u)|^2 \) \(du \), \(\mathcal{F}_z \subset \mathcal{F}_u \).

Si \(f(z, z) \) est un processus mesurable, \(\mathcal{F} \)-adapté, tel que \(\int_{\mathbb{R}^2} E[f(z)]^2 \) \(dz < \infty \), alors \(\int_{\mathbb{R}^2} |f(u)|^2 \) \(du \), \(\mathcal{F}_z \subset \mathcal{F}_u \).
PROCESSUS DE MARKOV ET DIFFUSION
A DEUX INDICES
TWO-PARAMETER DIFFUSION AND MARKOV PROCESSES

Si \(\Psi(z,z') \) est une fonction mesurable de \((z,z')\), telle que
\[
- \Psi(z,z') = 0 \quad \text{saut si} \quad z \neq z',
\]
- \(\Psi(z,z') \in F_{Z^{2v}}, \) mesurable
\[
\int_{R_{Z}} E[\Psi(z,z')] \, dz < \infty.
\]
alors l'intégrale stochastique
\[
\int_{R_{Z \times R_{Z}}} \Psi(u,v) \, dB_u \, dB_v
\]
alune martingale telle que
\[
E \left[\int_{R_{Z \times R_{Z}}} \Psi(u,v) \, dB_u \, dB_v \right] = \int_{R_{Z \times R_{Z}}} E[\Psi(u,v)] \, du \, dv.
\]
De même, les intégrales
\[
\int_{R_{Z \times R_{Z}}} \Psi(u,v) \, dB_v \text{ et} \int_{R_{Z \times R_{Z}}} \Psi(u,v) \, du
\]
donc respectivement une 1-martingale et une 2-martingale, telles que
\[
E \left[\int_{R_{Z \times R_{Z}}} \Psi(u,v) \, dB_v \right] = \int_{R_{Z \times R_{Z}}} E[\Psi(u,v)] \, du \, dv
\]
\[
\text{et} \quad E \left[\int_{R_{Z \times R_{Z}}} \Psi(u,v) \, du \right] = \int_{R_{Z \times R_{Z}}} E[\Psi(u,v)] \, du \, dv.
\]
Une semi-martingale du type brownien est définie dans
(4) par
\[
X = X_0 + \int_{R_{Z}} \left(\Psi(u,v) \right) dB_v.
\]
(2.1)
\[
\Psi(u,v) = \Psi(u,v) \, dB_v\text{ et} \Psi(u,v) \, dB_v,
\]
où \(\Psi(z,z') \) désigne l'indicatrice de l'ensemble
\((z', z' \neq z)\), les différentes intégrales stochastiques étant définies comme plus haut.

C'est sous cette forme qu'on étudiera, au paragraphe 4,
n'une Équation Différentielle Stochastique à deux paramètres.

3. PROPRIÉTÉS DE MARKOV

3.1 - CARACTÉRISATION GÉNÉRALE

On considère dans ce paragraphe un processus
\(X = (X_t, \omega) \) et sa filtration complétée et
renue continue à droite \(\mathcal{F}_t \).

Dans le but de simplifier les notations, on désignera par \(P(X_t, \ldots, X_{t+n}) \) la loi de probabilité d'un ensemble \((X_t, \ldots, X_{t+n})\) de variables aléatoires conditionnellement à une sous-tribu \(\mathcal{E} \) de \(\mathcal{F} \).

Si \(z \in \mathbb{R} \), \(z' \in \mathbb{R} \) et \(z' \neq z \) est le point de \(R \) la plus proche de \(z' \).

Définition 2.

\(X \) est dit horizontalement markovien si
\[
\forall z \in R_{Z_0}, \forall v \in R^K, \forall z_1, \ldots, z_n \in \mathbb{R}, \mathbb{E} (X_{z_1}, \ldots, z_n) (z_{z_0}),
\]
\[
P(X_{z_1}, \ldots, z_n | F_z) = P(z_1, \ldots, z_n | z_1, \ldots, z_n)
\]
\(X \) est dit verticalement markovien si
\[
\forall z \in R_{Z_0}, \forall v \in R^K, \forall z_1, \ldots, z_n \in \mathbb{R}, \mathbb{E} (X_{z_1}, \ldots, z_n) (z_{z_0}),
\]
\[
P(X_{z_1}, \ldots, z_n | z_{z_1}, \ldots, z_{z_n}) = P(X_{z_1}, \ldots, z_n | z_{z_1}, \ldots, z_{z_n})
\]
La proposition suivante donne une caractérisation de la propriété markovienne moins redondante que la définition 1.

Proposition 1.

\(X \) est markovien si, et seulement si, \(X \) est horizontalement et verticalement markovien.

La propriété markovienne confère à la filtration \(\mathcal{F} \) toutes les propriétés utiles au calcul stochastique, en particulier (F4) du paragraphe 2. La démonstration de ce fait et de celle de la proposition 1 est faite par des arguments géométriques et détails dans (5).

Le théorème suivant donne une troisième caractérisation de la propriété markovienne, mentionnée et développée dans le cas gaussien, par NUALART et SANZ dans (1).

Théorème 1.

\(X \) est markovien si, et seulement si
\[
\forall z, z' \in \mathbb{R}, \forall v, \forall z_1, \ldots, z_n \in \mathbb{R}, \mathbb{E} (X_{z_1}, \ldots, z_n | F_{z}) = P(z_1, \ldots, z_n | z_{z_1}, z_{z_2}, \ldots, z_{z_n})
\]

La condition (3.1) est équivalente à la suivante
\[
(\forall z, z_1, \ldots, z_n \in \mathbb{R}, \forall v, \forall z_1, \ldots, z_n \in \mathbb{R}, \mathbb{E} (\mathbb{E} (X_{z_1}, \ldots, z_n | F_{z})) = P(z_1, \ldots, z_n | z_{z_1}, \ldots, z_{z_n})
\]

Lemme 1.

Soit \(\mathcal{E} \) et \(\mathcal{G} \) des sous-tribus de \(\mathcal{A} \), telles que \(\mathcal{E} \subseteq \mathcal{G} \),
et \(Y_1, \ldots, Y_n \) des variables aléatoires de
\(L^2(\mathbb{R}^n, \mathcal{A}, P), \) telles que \(\forall f, g_1, \ldots, g_n \) fonctions bornées,
\[
\mathbb{E} (f(X_{1}, \ldots, X_{n}) | \mathcal{E}) = \mathbb{E} (f(X_{1}, \ldots, X_{n}) | \mathcal{G})
\]
alors
\[
\mathbb{E} (f(X_{1}, \ldots, X_{n}) | \mathcal{E}) = \mathbb{E} (f(X_{1}, \ldots, X_{n}) | \mathcal{G})
\]
où \(\mathcal{E} \) et \(\mathcal{G} \) désignent la plus petite tribu qui rend mesurables les \(Y_i \).

Démonstration. On suppose \(n = 1 \) pour simplifier. Un raisonnement de classes monotones montre que toute v.a.
 PROJET DE MARKOV ET DIFFUSION A DEUX INDICES
TWO-PARAMETER DIFFUSION AND MARKOV PROCESSES

\[E[f(Y)] \text{ (resp. } f \circ v(Y)) \text{-mesurable, positive bornée, est limite croissante de sommes finies du type } \sum_{i=1}^{n} U_i h_i(Y) \text{ où } U_i \text{ est } \mathcal{F} \text{-mesurable et } h_i \text{ borneée. On en déduit, d'une part, qu'il suffit de vérifier :}\]

\[Ef(x_2 x_1 y Z) = Ef(x_2 x_1 y (\circ v(Y)) y Z) \]

pour \(Z \) v.a. \(\mathcal{G} \)-mesurable et \(g \) borneée bornée.

D'autre part, qu'on obtient grâce à l'hypothèse :\]

\[Ef(r(x_2 x_1 y (\circ v(Y)) y Z)) = Ef(Ef(x_2 x_1 y (\circ v(Y)) y (g \circ z)) Z) \]

Cette relation conduit au résultat.

Démonstration.

Revenons maintenant au théorème 4 et considérons \(X \) un processus markovien.

Soit à calculer \(Ef(X_n^z \mid E^z) \), pour \(z > y \).

Remarquons que,
\[
X_n^z = \sigma(x_{1,z}^z, \ldots, x_{n,z}^z) V(x_{1,z}^z, \ldots, x_{n,z}^z, z_n), \text{ alors}
\]
\[E[f(X_n^z) \mid E^z]\]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]

D'où, en appliquant le lemme 1,
\[
Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]

Le théorème de classe monotone permet alors d'écrire
\[
Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]
\[
= Ef(X_n^z) \mid E^z \sigma(x_1^z, \ldots, x_n^z) \]

Le théorème 1 prend alors la forme suivante :

THEOREME 1'.
\[
X \text{ est markovien si, et seulement si,} \]
\[
W \in R_{0^+}, \forall z > x, \ (X_n^z \mid B_z) = (X_n^x \mid B_z) \]

Démonstration. L'équivalence de (3.6) avec (3.1) dans le cas gaussien, est due au fait que le tribu \(G_z \) est engendrée par les combinaisons linéaires des \(X_n^z, z \neq z \).

Le théorème 1 prend alors la forme suivante :

\[
\mathcal{F} \circ v(Y) \text{-mesurable, positive bornée, } E(Y \mid E^z) = E(Y \mid E^z) \]
\[
\mathcal{G} \circ v(Y) \text{-mesurable, positive bornée, } E(Y \mid E^z) = E(Y \mid E^z) \]

PROPOSITION 4.
\[
\forall Y \in \mathcal{G}_z \text{-mesurable, bornée, } E(Y \mid E^z) = E(Y \mid E^z) \]
\[
\forall Y \in \mathcal{F}_z \text{-mesurable, bornée, } E(Y \mid E^z) = E(Y \mid E^z) \]

REMARQUE 2. Étant donné une filtration \(\mathcal{F} \) quelconque, satisfaisant aux conditions (F1)-(F4) du paragraphe 2, il est possible de définir la propriété markovienne d'un processus \(X \) relativement à cette filtration, exactement comme dans la définition (3.1).

On peut conjecturer que le théorème 4 est encore vrai sous cette nouvelle formulation. En tout cas, un examen attentif de la démonstration de ce théorème montre que, dans le cas où la filtration \(\mathcal{F} \) est la filtration naturelle d'un mouvement brownien, tous les résultats précédents restent vrais sans aucune modification.

3.2 - CAS GAUSSIEN.

Dans ce paragraphe, \(X = (X_n^z, z \in \mathbb{R}^*) \) représente un processus gaussien centré. Pour un processus gaussien \(\mathcal{F}_z \) représentera le plus petit sous-espace hilbertien de \(L^2(\mathcal{A}, \mathcal{F}) \) contenant la famille \((X_n^z, z \neq z) \).

Pour une variable aléatoire \(Z \) de \(L^2(\mathcal{A}, \mathcal{F}) \), et un sous-espace hilbertien \(\mathcal{H} \) de \(L^2(\mathcal{A}, \mathcal{F}) \), \(Z \mathcal{H} \) désignera la projection orthogonale de \(Z \) sur \(\mathcal{H} \).

PROPOSITION 5.
\[
\forall x \in \mathbb{R}^+, \forall x > z, \ (X_n^z \mid B_z) = (X_n^x \mid B_z) \]

Démonstration. L'équivalence de (3.6) avec (3.1) dans le cas gaussien, est due au fait que le tribu \(\mathcal{G}_z \) est engendrée par les combinaisons linéaires des \(X_n^z, z \neq z \).

Le théorème 1 prend alors la forme suivante :

THEOREME 1'.
\[
X \text{ est markovien si, et seulement si,} \]
\[
W \in R_{0^+}, \forall z > x, \ (X_n^z \mid B_z) = (X_n^x \mid B_z) \]

où \(a, b \) et \(c \) sont des constantes de projection.

La caractérisation des processus gaussiens markoviens par (3.6) et (3.7) a été considérée par KOREZLOGLU dans (2) et par NUALART et SAMZ dans (1).

Avec des hypothèses de régularité sur sa fonction de covariance, comme dans (1) et (2), on peut mettre un processus gaussien markovien nul sur les axes sous la forme suivante
\[
X_n^z = \phi(z) \int_{R^+} G(u) d\nu u, \]

où \(\phi(z) \) est une fonction non aléatoire continue positive et \(G(u) \) est un aléatoire de carré intégrable.

Supposons maintenant que \(\phi \) soit de classe \(C^2 \) et \(G \) de classe \(C^1 \), alors, en différenciant par rapport à \(x \) puis \(y \), on obtient l'équation suivante :
\[
dx{xy} = \frac{3}{2}\delta(x,y)\delta^{-1}(x,y)X_{xy} \, dx \, dy + \frac{3}{2}\delta(x,y)\delta_{y}^{x}G(x,y)dy \, dx
\]
\[
+ \frac{3}{2}\delta(x,y)\delta_{x}^{y}G(x,y)dx \, \delta_{x}^{y}G(y,x)dx \, dy
\]
\[
\text{(3.8)}
\]

où \(\delta^{-1}(x,y)\) désigne l'inverse de \(\delta(x,y)\) et où \(dx_{xy}\) représente la différentielle d'ordre deux par rapport à \(x\) et \(y\).

On montre que si \(X\) est une semi-martingale du type (2.1) qui a une forme intégrale suivante, où \(u=(s,t)\) et \(v=(s',t')\):

\[
x_{z} = \int_{R^{2}} \frac{3}{2}\delta(s,t)\delta^{-1}(s,t) \, X_{st} \, ds \, dt + \int_{R^{2}} \phi(u)G(u)du \, \delta_{x}^{y}G(y,x) \, dx \, dy
\]
\[
+ \int_{R^{2}} \delta_{x}^{y}G(x,y) \, \delta_{x}^{y}G(y,x) \, dx \, dy
\]
\[
\text{(3.9)}
\]

On reviendra sur ce type d'équation à la fin du paragraphe suivant.

4. EQUATIONS DIFFÉRENTIELLES STOCHASTIQUES

D'une façon analogue aux processus à un indice, on définit une Équation Différentielle Stochastique (E.D.S.) comme une semi-martingale, dont les termes figurant dans l'intégrales sont fonctions instantanées de \(X_{z}\).

On étudie donc l'Équation Différentielle Stochastique suivante:

\[
x_{z} = x_{0}^{1} - x_{0}^{2} - x_{0}^{3} = \int_{R^{2}} \left[\delta_{0}(u)X_{u} \, du + \phi(u)X_{u} \right] \, dx \, dy
\]
\[
+ \int_{R^{2}} \left[\delta_{0}(u,v)X_{u} \, du \, dx \, \delta_{0}(u,v)X_{v} \, dy \right] \, dx \, dy
\]
\[
\text{(4.1)}
\]

\[
g(u,v, X_{uv}) \, du \, dv
\]

où \(X_{0}\) représente la variable à l'origine, \(X_{0}^{1}\) et \(X_{0}^{2}\) les valeurs sur les axes, avec \(X_{0} = X_{0}^{1} = X_{0}^{2}\).

\(X_{0}^{1}, X_{0}^{2}, X_{0}^{3}\) représentent les conditions initiales, et sont telles que \(X_{0}\) soit \(\delta_{0}\)-mesurable, \(X_{0}^{1}\) et \(X_{0}^{2}\) également mesurables, et \(X_{0}^{3}\) \(\delta_{0}(u,v)\)-mesurable.

Cette équation, dont l'étude a été suggérée par J. SHELTER, est une forme généralisée de celle qui a été étudiée par CAIRNS dans (5).

Le théorème suivant établit l'existence et l'unicité d'une solution pour l'équation (4.1), moyennant quelques hypothèses de régularité sur les fonctions \(\delta, \phi, \psi, f\) et \(g\).

THEORÈME 2.

Soit \(B\) un bruit brownien, et \(\xi\) sa filtration naturelle.

Si les fonctions \(\delta(z,x)\) et \(g(z,x)\) sont lipschitziennes par rapport à \(x\), uniformément en \(z\), et si \(\phi(z,x',x), f(z',x')\) et \(g(z',x')\) sont lipschitziennes par rapport à \(x\), uniformément en \(z'\), alors l'E.D.S. (4.1) admet une solution unique,

\[\text{dons les trajectoires sont continues.}\]

Démonstration. On donne ici une idée de la démonstration, qui consiste à construire par approximations successives un processus vérifiant l'équation (4.1).

On appelle \(S\) l'opérateur sur les processus de carré intégrable, défini par

\[
(SY)_{z} = -X_{z} \times X_{z} \times X_{z} + \int_{R^{2}} \left[\delta_{0}(u) \, \phi(u,v, X_{uv}) \, du \, dv \right] \, dx \, dy
\]
\[
+ \int_{R^{2}} \delta_{0}(u,v)X_{u} \, du \, dx \, \delta_{0}(u,v)X_{v} \, dy \, \delta_{0}(u,v)X_{v} \, dx \, dy
\]

On définit alors la suite \(X_{0}^{n}\) de processus par

\[
x_{z}^{0} = -X_{z} \times X_{z} \times X_{z}
\]
\[
x_{z}^{n} = (5X_{z}^{n-1} - x_{0}^{1} - x_{0}^{2})
\]

Grâce aux hypothèses de Lipschitz sur les fonctions \(\delta, \phi, \psi, f\) et \(g\), \(X_{z}^{n}\) converge presque sûrement et dans \(L^{2}\) vers \(X_{z}\), uniformément en \(z\). La limite \(X_{z}\) vérifie évidemment \(S_{z} = X_{z}\), et est donc solution de l'E.D.S. définie par (4.1).

D'autre part, il est facile de voir, par récurrence sur \(n\), que les \(X_{z}^{n}\) sont des processus continus en \(z\) ; la convergence uniforme en \(z\) de \(X_{z}^{n}\) entraîne alors la continuité des trajectoires du processus \(X_{z}\).

On montre l'unicité de la solution, en considérant deux solutions de l'E.D.S. (4.1), soit \(X_{z}^{1}\) et \(X_{z}^{2}\), avec les mêmes conditions initiales ; \(X_{z}^{1}\) et \(X_{z}^{2}\) vérifient alors

\[
E(\delta_{0}(u,v)X_{u}X_{v}) = 0,
\]

ce qui donne \(X_{z}^{1} = X_{z}^{2}\).

Le problème est de savoir sous quelles conditions supplémentaires l'E.D.S. (4.1), satisfaisant aux conditions du théorème 2, possède une solution markoviennne.

Ce problème n'est pas encore résolu dans toute sa généralité. Il est néanmoins possible, sous certaines contraintes de liaison entre les fonctions \(\delta, \phi, \psi, f\) et \(g\), d'écrire l'E.D.S. satisfaite par un processus \(X = (X_{z}, z \in R^{2})\) qui soit à la fois une diffusion horizontalement et verticalement markoviennne.

Considérons l'équation suivante, inspirée du cas gaussien :

\[
dx_{xy} = \delta(\phi(x,y, x_{xy}) \, dx + \phi(x,y, x_{xy}) \, G(x,y) \, dy
\]
\[
+ \delta(\phi(x,y, x_{xy}) \, G(x,y) \, dx + \phi(x,y, x_{xy}) \, G(x,y) \, dy
\]
\[
+ \left[\phi(x,y, x_{xy}) \, G(x,y, x_{xy}) \, dy \right] \, dx
\]
\[
\text{(4.2)}
\]

où \(G(x,y)\) est une fonction non aléatoire.

L'équation (4.2), si les fonctions \(\delta, \phi, \psi, f, \delta, g\) sont suffisamment régulières, se met sous la forme (4.1) ; si \(u = (s,t)\) et \(v = (s',t')\), (4.2) équivaut à (4.3) ci-dessous.
\[X_z = \int_{\mathbb{R}^2} \left[\tilde{g}(u, x, u) du + \tilde{g}(u, x, u) dB_u \right] \]

\[+ \int_{\mathbb{R}^2} \left[\frac{\partial}{\partial z} \psi(u, x) dB_u + \frac{\partial}{\partial z} \psi(u, x) dB_u \right] \]

\[+ \int_{\mathbb{R}^2} \left[\frac{\partial}{\partial z} \psi(u, x) dB_u + \frac{\partial}{\partial z} \psi(u, x) dB_u \right] \]

 Sous des hypothèses de régularité qui permettraient d'appliquer le théorème 2, on peut déterminer des contraintes reliant ces fonctions, et qui permettent d'écrire les équations horizontale et verticale suivantes:

\[d_x X_{xy} = \frac{\partial}{\partial x} \psi(x, y, x, y) dx + \frac{\partial}{\partial x} \psi(x, y, x, y) dy \]

\[d_y X_{xy} = \frac{\partial}{\partial y} \psi(x, y, x, y) dy + \frac{\partial}{\partial y} \psi(x, y, x, y) dy \]

ou \(d_x X_{xy} \) et \(d_y X_{xy} \) représentent respectivement la variation du processus \(X \) suivant les axes horizontal et vertical.

Dans le cas où les coefficients sont assez réguliers pour que les équations (4.4) admettent une solution, alors, pour tout \(x \) et \(y \), les solutions de ces équations sont des diffusions markoviennes en \(x \) et \(y \) respectivement. On peut alors affirmer que le processus \(X \) vérifiant, quand \(y \) varie, le famille d'équations horizontales, est horizontalement markovien ; \(X \) vérifiant, d'autre part, quand \(x \) varie, la famille d'équations verticales, il est verticalement markovien.

D'après la proposition (1), on peut donc affirmer que le processus, solution des équations équivalentes (4.2)-(4.3), est markovien.

Cette recherche fera l'objet d'une prochaine publication.

REFERENCES

