EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RESULTATS. *

Dominique BARBA et Pierre-Yves ARQUES

Laboratoire Traitement du Signal - Université de RENNES

RESUME

On étudie, par simulation hybride, certaines propriétés statistiques de sortie et certaines performances des systèmes de détection par comptage des dépassements d'un seuil interne. Les résultats obtenus sont comparés à ceux donnés dans les mêmes conditions d'expérience par un système filtrage-carré-intégration. On détermine enfin l'influence, sur ces performances, d'une variation des différents paramètres fixés dans l'expérience.

SUMMARY

We perform a study by hybrid simulation of some statistical output properties and performances of a signal detection system by mean of counting the internal level crossings. Then, the observed results are compared with those given by a filter-squarer-integrator receiver (in the same experimental conditions).

Finally, we determine the influence, upon these performances, of varying the different parameters fixed for the experience.

EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RESULTATS

1 - GENERALITES ET METHODE DE SIMULATION

On a propose dans un recent article un mode de detection sous optimal d'un signal faible perturbé par un bruit, le signal étant suppose additif au bruit, de duree T, connue, d'instant d'arrivee inconnue. L'interet de ce systeme r세ix dans sa facilité de réalisation sous forme logique.

Une réalisation possible de ce systeme en detection presque continue a été donnee dans [1]. Le principe en réside dans une prise de décision qui, à l'instant t, résulte de la comparaison, à un seuil externe, de la réalisation de la variable aléatoire "nombre de dépassements d'un seuil interne par la fonction d'entrée sur l'intervalle [t-T,t]". La fonction d'entrée X(t) (considérée en sortie du filtre passe-bande d'entrée délimitant la bande à traiter) est comparée à un seuil interne de hauteur λ. Tout dépassement ascendant du seuil λ par X(t) engendre une impulsion en sortie de ce dispositif. Celui-ci est suivi d'un compteur mesurant le nombre d'impulsions reçues (c'est-à-dire le nombre de franchissements ascendants du seuil λ) pendant des durées de comptage successives et constantes T. A chaque fin de durée de comptage, le contenu du compteur est comparé à un seuil μ de décision ; il est ensuite remis à zéro et une nouvelle période de comptage commence (on néglige le temps mort nécessaire à la comparaison et à la remise à zéro) (figure 1).

![Diagramme de système de détection](image)

FIGURE 1 : Système de détection de signaux par comptage des dépassements d'un seuil interne.
EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RESULTATS

Une détection presque continue peut être faite par exemple en utilisant q compteurs dont les instants de début de comptage sont décalés de T/q d'un compteur au suivant [1]. La prise de décision se fait donc à des instants de la forme t_o + T/q. La réalisation d'un tel dispositif de comptage peut être aussi remplacée par celle d'une mémoire circulante à sorties latérales, telle qu'un registre à décalage à sorties parallèles, dont on évalue le contenu aux instants de prise de décision.

On a ainsi décrit une structure de système qu'il semble possible d'utiliser (de même par exemple que le système filtrage-carré-intégration) avec différentes catégories de signaux et différentes catégories de bruit. La structure ainsi définie laisse libre plusieurs paramètres : filtrage d'entrée, hauteur du seuil interne, durée de comptage, durée séparant deux décisions successives, hauteur du seuil de décision. Ces quantités sont à choisir, de préférence de manière optimale, suivant les conditions d'entrée. En particulier, on a constaté, dans [1], l'existence d'une hauteur de seuil interne optimale dans des conditions d'entrée données. La durée de comptage est déterminée de manière optimale par la durée du signal à laquelle elle est sensiblement égale pour q assez grand [1].

Indépendamment de l'intérêt que peuvent présenter certaines de ses caractéristiques vis à vis d'autres considérations, on s'intéresse ici à l'évaluation des performances en détection d'un tel système.

Dans le cas présent, une telle évaluation se heurte à des difficultés de calcul sur le plan théorique (même dans des cas classiques), nécessitant un recours à l'expérience ; elle demande un choix des conditions d'entrée et des paramètres du système ; sa valeur dépend étroitement des quantités utilisées pour la mesure des performances, lesquelles doivent correspondre au mode d'emploi du système (détectation continue). Les résultats obtenus correspondent à une situation bien déterminée ; leur extension à des situa-
EVALUATION DES PERFORMANCES D'UN SYSTÈME DE DÉTECTION DE SIGNAUX PAR COMPTAGE DES DÉPASSEMENTS D'UN SEUIL INTERNE : PRÉSENTATION DE QUELQUES RESULTATS

tions voisines peut être faite en considérant les variations engen-
drées sur des paramètres caractéristiques de la détection.

Le recours à la méthode expérimentale, la non-optimalisa-
tion de la structure testée pour le cas traité, le système de grân-
deurs de sortie utilisé pour l'évaluation, impliquent qu'il est
intéressant de présenter, non seulement des résultats absolus de
performances, mais aussi une évaluation en valeur relative, par
comparaison avec un système de structure classique, pouvant être
optimal en théorie statistique de la détection pour certaines condi-
tions d'entrée.

On s'est donc imposé une évaluation expérimentale des per-
formances en détection du système par dépassements de seuil, d'une
part absolue, d'autre part relative en le comparant au système
classique filtrage-carré-intégration. Les conditions d'entrée, iden-
tiques pour les deux systèmes, correspondent à un problème type de
détection (tranche de signal sinusoidal, d'amplitude, de Doppler,
de date d'arrivée inconnue, dans un bruit gaussien, stationnaire,
de largeur de bande "étroite" ou "moyenne"). Les grandeurs de mesure
des performances correspondent à une utilisation en continu (taux
de fausse alarme, probabilité de détection). L'influence des vari-
tions des différents paramètres du problème a été évaluée par consi-
dération de la variation engendrée sur le rapport signal sur bruit
de sortie ; ce dernier est relié, pour le système par franchisse-
ments du seuil optimal et pour le système filtrage-carré-intégration
au rapport signal sur bruit d'entrée : pour de mêmes conditions
d'entrée, représentées par la valeur du rapport signal sur bruit
d'entrée, il correspond à chaque jeu de paramètres du problème une
valeur du rapport signal sur bruit de sortie et une infinité de
jeux de valeurs du taux de fausse alarme et de la probabilité de dé-
tection (suivant la hauteur du seuil de décision). La comparaison
des systèmes résulte de celle des probabilités de détection dans
des conditions d'entrée identiques et pour des taux de fausse alarme

1033
Égaux, ou, à défaut, de celle des rapports signal sur bruit de sortie dans des conditions d’entrée identiques.

La création des conditions d’entrée des systèmes est faite aisément en électronique analogique (méthode utilisée de préférence à une simulation numérique). Pour assurer un même taux de fausse alarme aux systèmes à comparer, il est nécessaire d’ajuster leur seuil de décision à chaque situation d’entrée donnée ; on a préféré, par passage à une méthode numérique, évaluer simultanément, pour des conditions d’entrée données, les couples taux de fausse alarme et probabilité de détection, pour un échantillonnage suffisant de valeurs des seuils de décision. La méthode expérimentale utilisée est du type simulation hybride.

La méthode expérimentale choisie, conduit à une prise de décision faite à des instants discrets, séparés de T/q, pour tous les systèmes. Mais la connaissance des instants de début et de fin du signal permet une prise de décision à l’instant de fin de signal reçu, c’est-à-dire à la date du maximum du signal de sortie des systèmes. On peut donc choisir les durées d'intégration du système carré-intégration et de comptage des systèmes à seuil en négligeant la discontinuité de la prise de décision. La durée d'intégration est choisie à partir de la courbe donnée dans [3], déterminant la durée d'intégration optimale d'un système filtrage-carré-intégration en fonction de la largeur de bande d'entrée (elle dépend donc de la largeur de bande du bruit d'entrée). La durée de comptage est choisie égale à la durée du signal, selon [1] (elle est identique pour tous les systèmes à seuil quelle que soit la largeur de bande d'entrée).
2 - MÉTHODE D'ÉVALUATION DES PERFORMANCES

Les performances ont été évaluées à l'aide de plusieurs systèmes de mesure. On ne donnera guère ici que celles correspondant au couple "probabilité de détection - taux de fausse alarme". On trouvera dans [2] différents réseaux en probabilités instantanées de détection et de fausse alarme. En outre la stabilité des performances, devant une variation de certains des paramètres dont dépend l'ensemble, est évaluée à l'aide des variations du rapport signal sur bruit de sortie. La situation à l'entrée est définie, étant données les hypothèses du problème, en terme de rapport signal sur bruit d'entrée ; elle est évaluée d'une manière générale en sortie du filtre d'entrée limitant la bande traitée.

On définit donc :

- un rapport signal sur bruit d'entrée valable pour tous les systèmes travaillant sur une même bande d'entrée ;

- un rapport signal sur bruit de sortie pour chaque structure considérée ;

- un taux de fausse alarme en sortie d'un système ;

- une probabilité de détection en sortie d'un système.

Le bruit d'entrée de tous les systèmes de même bande d'entrée est gaussien, stationnaire, centré, de puissance moyenne \(\sigma_B^2 \). Le signal à détecter est une tranche de sinusoïde, de fréquence \(\nu_s \), de durée \(T \), d'amplitude \(\sqrt{2s} \).

Le rapport signal sur bruit d'entrée est donc :

\[
R = \frac{S}{\sigma_B^2}
\]

ou encore en décibels :

\[
\left[\frac{S}{B} \right]_e = 10 \log_{10} R
\]
EVALUATION DES PERFORMANCES D'UN SYSTÈME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RÉSULTATS

Le rapport signal sur bruit de sortie est défini pour tous les systèmes comme le rapport de l'accroissement de la composante continue de sortie (due à la présence du signal) à l'écart-type du bruit de sortie \([1,3]\). Il est donc de la forme :

\[
\begin{bmatrix}
S \\
B
\end{bmatrix}_s = \frac{E(V_{S+B}(t)) - E(V_B(t))}{\sqrt{E(V_B^2(t)) - E^2(V_B(t))}}^{1/2}
\]

expression dans laquelle :

- \(V_B\) désigne la variable aléatoire de sortie du système, en présence de bruit seul, à l'instant \(t\) de prise de décision ;

- \(V_{S+B}\) désigne la variable aléatoire de sortie du système, en fin de signal d'entrée (correspondant au maximum du signal de sortie), à l'instant \(t\) de prise de décision.

Le taux de fausses alarmes \(\tau\) est défini comme le nombre moyen de fausses alarmes par unité de temps. Une fausse alarme est engendrée par un dépassement du seuil de décision par la variable de sortie en présence de bruit seul ; elle est donc caractérisée par l'existence de deux échantillons successifs de la variable de sortie, en absence de signal, tels que le premier est inférieur et le dernier est supérieur au seuil de décision. On a aussi utilisé dans la simulation pour évaluer la fausse alarme, la probabilité instantanée de fausse alarme, c'est-à-dire la probabilité pour que la variable aléatoire de sortie à un instant donné, en absence de signal, soit supérieure au seuil de décision (les résultats avec cette quantité sont donnés dans \([2]\)).

Les systèmes de détection utilisés présentent la particularité d'avoir un temps d'intégration en sortie (constante de temps de l'intégrateur, ou durée de comptage) adapté à la durée \(T\) du signal. Ils transforment donc le signal d'entrée en un signal de sortie présentant (en absence de bruit) un maximum absolu à l'instant de fin du signal d'entrée. On peut envisager l'évaluation de...
EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RESULTATS

la probabilité de détection pour un système en recherchant les dépassements du seuil de sortie pendant toute la durée du signal d'entrée, ou même pendant toute la durée du signal de sortie. On peut alors discuter du critère à utiliser par exemple quant à la durée et au nombre des dépassements pendant la durée de présence du signal. On peut aussi de manière plus simple, analogue à celle préconisée dans [4], considérer que la probabilité de détection (au moins un dépassement pendant la durée de présence du signal) est généralement légèrement supérieure à la probabilité instantanée de détection à l'instant du maximum de sortie. La probabilité de détection est donc définie comme la probabilité instantanée de détection à l'instant du maximum de sortie c'est-à-dire comme la probabilité pour que la variable aléatoire de sortie, pour un signal donné présent, à l'instant du maximum du signal de sortie, soit supérieure au seuil de décision.

Dans la simulation le taux de fausse alarme α a été évalué en comptant sur une durée θ le nombre de franchissements d'un seuil de décision à l'extérieur des périodes (de durée 2T) de présence du signal de sortie. La probabilité instantanée de détection a été évaluée en comptant le nombre de détections effectuées aux instants de fin de présence du signal d'entrée. Les rapports signal sur bruit de sortie sont de même calculés en évaluant la valeur moyenne et l'écart-type de la variable de sortie sur la durée θ à l'extérieur des périodes (de durée 2T) de présence du signal de sortie et en évaluant la valeur moyenne de la variable de sortie prise aux instants de fin de présence du signal d'entrée.
ÉVALUATION DES PERFORMANCES D'UN SYSTÈME DE DÉTECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRÉSENTATION DE QUELQUES RÉSULTATS

3 - RÉSULTATS OBTENUS

Les performances obtenues correspondent à des structures de système particularisées par les valeurs données aux paramètres intervenant dans le problème (outre les hypothèses déjà faites de bruit gaussien stationnaire centré et de signal sinusoïdal) :
- fréquence centrale d'entrée,
- largeur de bande d'entrée,
- densité spectrale du bruit d'entrée et courbe de gain du filtre d'entrée,
- fréquence du signal,
- durée du signal,
- rapport signal sur bruit d'entrée,
- hauteur du seuil interne,
- durée d'intégration ou de comptage,
- hauteur du seuil de décision.

On a choisi dans la simulation une fréquence centrale d'entrée unique de 5 KHz et deux largeurs de bande différentes, l'une (moyenne) de 1,5 KHz, l'autre (étroite) de 60 Hz (à - 6 dB). La densité spectrale du bruit d'entrée est sensiblement constante sur la bande traitée. Le filtre d'entrée est constitué soit d'un filtre passe-bande à caractéristique Butterworth du 3ème ordre (bande moyenne) soit de deux filtres actifs passe-bas du 2ème ordre réglés à la résonance, en série avec le précédent (bande étroite). La puissance moyenne du bruit est \(\sigma_B^2 \) en sortie du filtre d'entrée considéré. La fréquence du signal a été prise égale à la fréquence centrale d'entrée. La durée du signal est unique, de 0,2 seconde. L'amplitude du signal a été choisie de façon à assurer à l'entrée des rapports signal sur bruit donnés (-12dB, -9dB, -6dB, -3dB, 0dB pour la bande moyenne et 0dB pour la bande étroite). On a testé en parallèle 4 hauteurs différentes du seuil interne (\(\lambda_1 = \sigma_B \), \(\lambda_2 = 1,5 \sigma_B \), \(\lambda_3 = 1,7 \sigma_B \), \(\lambda_4 = 2,2 \sigma_B \); ils varient très légère-
Évaluation des performances d'un système de détection de signaux par comptage des dépassements d'un seuil interne : présentation de quelques résultats

ment d'une expérience à la suivante) et toutes les hauteurs de seuil de décision possibles, compte-tenu du traitement numérique utilisé. Les durées d'intégration et de comptage ont été adaptées à la durée T du signal (durée d'intégration choisie selon [3] correspondant à une fréquence de coupure de l'ordre de 1,25 Hz, durée de comptage égale à la durée du signal).

Les figures 2, 3, 4 représentent les réseaux de courbes donnant la probabilité de détection β, en fonction du taux de fausse alarme pondéré $\frac{T}{T_0}$, dans le cas du filtrage d'entrée à bande moyenne, pour des valeurs du rapport signal sur bruit d'entrée respectivement de -12dB, -9dB, -6dB ; chaque réseau comporte 5 courbes, une pour le système filtrage-carré-intégration, et une pour chaque système par comptage de dépassements d'un seuil interne (λ_1, λ_2, λ_3, λ_4).

La figure 5 représente les performances des systèmes étudiés, dans le même cas que celui représenté figure 4 ($\frac{S}{B} = -9$dB), traduites en probabilité de détection β fonction de la probabilité instantanée de fausse alarme α.

La figure 6 représente les performances (réseau de courbe donnant la probabilité de détection β en fonction du taux de fausse alarme pondéré $\frac{T}{T_0}$) dans le cas du filtrage d'entrée à bande étroite, avec un rapport signal sur bruit d'entrée de 0dB, pour le système filtrage-carré-intégration et 3 systèmes par comptage de dépassements d'un seuil interne (λ_2, λ_3, λ_4).

La figure 7 représente les performances à taux de fausse alarme pondéré constant $\frac{T}{T_0} = 10^{-3}$ (réseau de courbes donnant la probabilité de détection en fonction du rapport signal sur bruit d'entrée) dans le cas du filtrage d'entrée à bande moyenne pour le système filtrage-carré-intégration et les 4 systèmes par comptage de dépassements d'un seuil interne.

On vérifie sur ces courbes l'influence importante de la hauteur du seuil interne déjà signalée dans [1]. La comparaison des
EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SINAUX
PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION
DE QUELQUES RESULTATS

figures 2 et 6 semblent indiquer une variation faible possible de la
hauteur du seuil interne optimale avec la largeur de bande d'entrée.
La hauteur de seuil interne optimale est voisine de la valeur $1,75 \sigma_B$
trouvée dans [1]. Les courbes montrent que le meilleur système par
dépassements de seuil est sensiblement équivalent au système carré-
intégration dans les mêmes conditions.

La figure 8 représente le rapport signal sur bruit de sor-
tie en fonction du rapport signal sur bruit d'entrée dans le cas du
filtrage d'entrée à bande moyenne, d'une part pour le système fil-
trage-carré-intégration, d'autre part pour le système par comptage
du nombre de dépassements du seuil interne optimal ($\lambda = 1,7 \sigma_B$). On
constate (ce qui confirme les résultats de [1]) que $\log_{10}[S/B]_S$ est
une fonction approximativement linéaire de $[S/B]_e$ en dB dans les 2
cas et que les 2 courbes sont sensiblement confondues. On en déduit
$[S/B]_S$ est sensiblement de la forme $[S/B]_S = c_m R^{c_e}$ où c_m et c_e
sont deux constantes indépendantes de R ; c_e ici est de l'ordre de
0,6.

La figure 9 donne enfin le taux de fausse pondéré $\frac{T}{T}$ et
la densité de probabilité de la variable aléatoire "nombre de dépas-
ssements du seuil optimal ($\lambda = 1,7 \sigma_B$), à l'instant de fin du signal
d'entrée, en présence de signal, à $[S/B]_e = -9$ dB" ; l'un et l'autre
sont tracés en fonction de la hauteur du seuil de décision. On vérifi-
ifie la nature sensiblement gaussienne de ces courbes (les courbes
en trait continu sont les courbes gaussiennes de même "valeur
moyenne" et "écart-type", que les courbes définies par les points
expérimentaux).
4 - STABILITE DES PERFORMANCES

Les performances présentées au paragraphe précédent ont une valeur relative en ce qui concerne la comparaison du système par franchissement d'un seuil interne au système filtrage-carré-intégration. La valeur intrinsèque de ces performances est liée aux valeurs numériques des paramètres effectivement choisies pour la simulation. On a donc étudié l'influence de la variation de ces paramètres sur les performances du détecteur par franchissements d'un seuil interne optimal, dans le cas où la largeur de bande d'entrée est moyenne. Les autres paramètres étant fixés aux valeurs numériques utilisées dans la simulation, on a fait varier successivement les paramètres importants du problème : largeur de bande d'entrée, fréquence du signal dans la bande moyenne traitée, durée du signal (et temps de comptage associé). L'influence sur les performances est évaluée à partir du rapport signal sur bruit de sortie. Ce dernier est relié pour le système considéré, au rapport signal sur bruit d'entrée, par la courbe correspondante de la figure 3.

Le rapport signal sur bruit de sortie choisi est de la forme :

$$\begin{align*}
\left[\begin{array}{c}
S \\
B
\end{array} \right]_s = \frac{E\{m_{S+B}(\lambda,T,\Delta v,v_s,[S/B]_e)\} - E\{m_B(\lambda,T,\Delta v)\}}{[E\{m_B^2(\lambda,T,\Delta v)\} - E^2\{m_B(\lambda,T,\Delta v)\}]^{1/2}}
\end{align*}$$

où m_B et m_{S+B} sont respectivement les variables aléatoires "nombre de dépassements du seuil λ, pendant la durée T, pour une largeur de bande d'entrée $\Delta v"$, d'une part en absence de signal, d'autre part à la date de fin de présence sur l'entrée d'un signal de rapport signal sur bruit d'entrée donné $\left[\begin{array}{c}
S \\
B
\end{array} \right]_e$, de fréquence v_s.

Une variation de la fréquence du signal dans la bande d'entrée n'affecte, dans le rapport signal sur bruit de sortie, que le terme $E\{m_{S+B}\}$. Le calcul de l'expression théorique permettant d'évaluer ce moment pour différentes valeurs de la fréquence du
signal et du rapport signal sur bruit d'entrée, permet de tracer le réseau de la figure 10. L'expression utilisée est (d'après [5])

\[E[m_{S+B}(\frac{\lambda}{\sigma_B})] = E[m_B(0)] \int_0^\infty \phi \left(\frac{\lambda}{\sigma_B} - \sqrt{2R \cos \theta} \right) \left[\phi \left(a \sin \theta \right) + \frac{a}{\sqrt{2}} \sin \theta \operatorname{erf} \left(\frac{a}{\sqrt{2}} \sin \theta \right) \right] d\theta \]

où :

- \(\lambda \) désigne la hauteur du seuil interne,
- \(\sigma_B \) désigne l'écart-type du bruit dans la bande d'entrée,
- \(R \) est le rapport signal sur bruit d'entrée,

\[a = -2\pi \nu_s \sqrt{2R} \left[\left(\frac{d^2 C_B(\tau)}{dt^2} \right)_{\tau=0} \right]^{-1/2} \]

- \(C_B(\tau) \) est la fonction de corrélation normée du bruit d'entrée \((C_B(0)=1) \),
- \(\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \)
- \(\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt \)

La quantité \(\left(\frac{d^2 C_B(\tau)}{dt^2} \right)_{\tau=0} \) a été évaluée en calculant

\[\frac{d^2 C_B(\nu)}{dt^2} = \frac{1}{\sigma_B^2} \int_{-\infty}^{+\infty} 4\pi^2 \nu^2 \gamma_B(\nu) d\nu \]

par intégration numérique à partir de la densité spectrale \(\gamma_B(\nu) \) du bruit d'entrée (c'est-à-dire du bruit en sortie du filtre d'entrée limitant la bande traitée) ; cette dernière est obtenue en multi-
EVALUATION DES PERFORMANCES D'UN SYSTÈME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DÉPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RÉSULTATS

pliant le carré du module du gain $G(v)$ du filtre d'entrée par la densité spectrale γ_o constante du bruit du générateur ; γ_o est elle-même évaluée sous la forme :

$$\gamma_o = \sigma_B^2 \left[\int_{-\infty}^{+\infty} |G(v)|^2 \, dv \right]^{-1}$$

où l'intégrale est calculée par intégration numérique.

La figure 11 représente le réseau des courbes du rapport signal sur bruit de sortie, dans les conditions d'entrée données, lorsque l'on fait varier la fréquence du signal et le rapport signal sur bruit d'entrée.

Une variation de la durée du signal et par conséquent du temps de comptage associé affecte les trois termes intervenant dans le rapport signal sur bruit de sortie. On sait [1], et on a vérifié expérimentalement sur une échelle d'abscisse plus étendue, que les valeurs moyennes des variables aléatoires m_B et m_{S+B} et l'écart-type des variables aléatoires m_B et m_{S+B}, dans les conditions d'entrée données, sont des fonctions de T de la forme :

$$E(m_B) = C_B \cdot T, \quad E(m_{S+B}) = C_{S+B} \cdot T$$

$$\left[E(m_B^2) - E^2(m_B) \right]^{1/2} = C_B' \cdot \sqrt{T}$$

$$\left[E(m_{S+B}^2) - E^2(m_{S+B}) \right]^{1/2} = C_{S+B}' \cdot \sqrt{T}$$

où C_B, C_{S+B}, C_B', C_{S+B}' sont indépendants de T. Les courbes de la figure 12, représentant ces fonctions, sont en effet sensiblement linéaires dans le domaine où elles sont représentées. On en déduit que le rapport signal sur bruit de sortie est, dans des conditions d'entrée donnée, une fonction de T de la forme :

$$\left[\frac{S}{B} \right]_S = \frac{C_{S+B} - C_B}{C_B'} \cdot \sqrt{T}$$

1043
EVALUATION DES PERFORMANCES D'UN SYSTÈME DE DÉTECTION DE SIGNAUX PAR COMPTAGE DES DÉPASSEMENTS D'UN SEUIL INTERNE : PRÉSENTATION DE QUELQUES RÉSULTATS

pour T appartenant à ce domaine intermédiaire de valeurs de T. Elle est également représentée figure 12.

Une variation de la largeur de bande d'entrée affecte les trois termes intervenant dans le rapport signal sur bruit de sortie. Les valeurs moyennes et les écarts-types des variables aléatoires m_B et m_{S+B} sont représentées, dans les conditions d'entrée données, figure 13, en fonction de la largeur de bande. On en déduit la courbe de variation du rapport signal sur bruit de sortie $[S/B]_S$ sous les mêmes hypothèses (figure 14).

On peut ainsi à l'aide des résultats représentés sur les courbes des figures 11, 12, 14 apprécier la stabilité du système de détection par comptage des franchissements du seuil interne optimal devant une modification des conditions d'utilisation.
ÉVALUATION DES PERFORMANCES D'UN SYSTÈME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DÉPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RÉSULTATS

- CONCLUSION

L'un des intérêts d'une telle étude est, outre les résultats développés pour les différents systèmes, sa participation à la mise au point d'un modèle schématisant les performances du système par franchissements d'un seuil interne, en fonction de ses paramètres. Ce modèle serait utilisable dans les conditions des précédentes expériences et serait approximativement valable pour des variations modérées des différents paramètres autour du point moyen considéré, sous l'hypothèse que les actions des variations de paramètres différents sont indépendantes. On obtient ainsi un rapport signal sur bruit de sortie de la forme :

\[
\left[\frac{S}{B} \right]_S = 10\sqrt{T} \left[4 \cdot R \right]^{0.6} \left[1 + 1.5 \cdot 10^{-4} (\nu_s - \nu_o) \right] \left(\frac{\Delta
u}{\nu_o} \right)^{0.3}
\]

avec : T durée du signal (exprimé en seconde), T > 1ms

\(R \) : rapport signal sur bruit d'entrée

\(\Delta
u \) : largeur de bande totale du bruit d'entrée ; \(\Delta
nu \) de [750,3000Hz]

\((\Delta
nu)_o = 1500 \text{ Hz} \) largeur de bande initiale

\(\nu_s \) : fréquence du signal

\(\nu_o = 5000 \text{ Hz} \) fréquence centrale du bruit d'entrée

avec \(|\nu_s - \nu_o| \leq \Delta
nu \)

On peut également envisager de développer un modèle mathématique du système par dépassements d'un seuil interne permettant d'en déduire directement les performances en détection continue (courbes "C.O.R. modifiées" β-t), les résultats obtenus sur la statistique de sortie au premier ordre mettant en évidence des formes gaussiennes.
EVALUATION DES PERFORMANCES D'UN SYSTEME DE DETECTION DE SIGNAUX PAR COMPTAGE DES DEPASSEMENTS D'UN SEUIL INTERNE : PRESENTATION DE QUELQUES RESULTATS.

BIBLIOGRAPHIQUE

FIGURE 2 : Probabilité de détection β - Taux de fausse alarme pondéré $\frac{1}{T}$; $[S/B] = -12$ dB et largeur de bande moyenne.

À filtrage-Carré-Intégration $\lambda_u = 2,26 \sigma_B$; $\lambda_3 = 1,65 \sigma_B$; $\lambda_2 = 1,51 \sigma_B$; $\lambda_1 = 1,03 \sigma_B$.
FIGURE 4 : Probabilité de détection $B -$ Taux de fausse alarme pondéré \(\lambda_2 \) ; \(\lambda \) = 1.52 $ B $; \(\lambda \) = 1.70 $ B $; \(\lambda \) = 2.18 $ B $; \lambda = 2.49 B$; \(\lambda \) = 2.80 $ B $; \(\lambda \) = moyenne de bande.
FIGURE 5 : Probabilité de détection β - Probabilité instantanée de fausse alarme α ; $|S/B|_p = -9$dB et largeur de bande moyenne.

Δ Filtre carré-intégration ; $\ast \lambda_4 = 2,25 \sigma_B$; $\times \lambda_3 = 1,67 \sigma_B$; $\bullet \lambda_2 = 1,50 \sigma_B$; $\sigma \lambda_1 = 1,02 \sigma_B$.
FIGURE 6 : Probabilité de détection $2 -$ Taux de fausse alarme pondéré \bar{p} ; $[S/B]_p = 0,58$ et largeur de bande étroite.
Filtrage-Carré-Intégration : $+ \lambda_0 = 3,35 \sigma_B$; $\times \lambda_0 = 3,75 \sigma_B$; $\circ \lambda_0 = 3,05 \sigma_B$

FIGURE 8 : Rapport signal sur bruit de sortie - Rapport signal sur bruit d'entrée à largeur de bande moyenne. Δ Filtrage-Carré-Intégration ; $+ \lambda_3 = 1,70 \sigma_B$.
FIGURE 7 : Probabilité β - Rapport signal sur bruit d'entrée à taux de fausse alarme pondéré constant $\frac{\lambda}{T} = 10^{-3}$. Δ Filtrage Carré-Intégration ; + $\lambda_4 = 2.25 \sigma_B$; $\times \lambda_3 = 1.70 \sigma_B$; $\circ \lambda_2 = 1.50 \sigma_B$; $\diamond \lambda_1 = 1 \sigma_B$.
FIGURE 9 : Taux de fausse alarme $\frac{\tau}{T}$ et densité de probabilité du nombre de dépassements du seuil $\lambda = 1,67 \sigma_B$ à l'instant de fin de passage du signal et à $|S/B|_e = -9$dB.
FIGURE 11 : Rapport signal sur bruit de sortie - Fréquence ν_e du signal pour différents rapports $|S/B|_e$; $T = 0.2s$.

FIGURE 10 : Espérance mathématique du nombre de dépassements du seuil $\lambda = 1.7 \sigma_B$ - Fréquence ν_s du signal pour différents rapports $|S/B|_s$; $T = 0.2s$.
FIGURE 12 : Valeur moyenne $E(m)$, écart-type σ_m, rapport signal sur bruit de sortie $|S/B|_e$ du nombre de dépassements du seuil $\lambda = 1.7\sigma_B$ en fonction de la durée de comptage T ; bruit seul à bande moyenne, bruit avec signal sinusoidal tel que $|S/B|_e = -6\text{dB}$.
FIGURE 13 : Valeur moyenne $E[m]$ et écart-type du nombre de dépassements d'un seuil $\lambda = 1.7 \, \sigma_B$ en fonction de la largeur de bande ; bruit seul, bruit plus signal sinusoïdal tel que $[S/B]_e = -6$dB.

FIGURE 14 : Rapport signal sur bruit de sortie $[S/B]_s$ en fonction de la largeur de bande ; signal sinusoïdal tel que $[S/B]_e = -6$dB.