TRAITEMENT D'IMAGES VISIOPHONIQUES :
TRANSFORMATION DE HADAMARD

Jeannine HENAFF

CNET - Département EST/DEF
92131. Issy-les-Moulineaux

RESUME Après un bref rappel sur les méthodes de compression d'information par transformation globale, on décrit la réalisation d'un transformateur de Hadamard, effectuant en temps réel, le traitement d'images de visiophone. Le dispositif comporte des lignes à retard à ondes acoustiques de surface et traite chaque image par plages successives.

SUMMARY Beginning with some considerations about information compression via global transformation of image, real-time implementation of Hadamard transformation is described by means of acoustic surface wave tapped delay lines. Experimentation has been carried out on visiophone images, in a multistep process applied on sub-image sequences.
I - INTRODUCTION -

La transmission d'une image exige un canal d'une certaine capacité liée notamment au produit BT de la bande passante utile par le temps nécessaire à la transmission. Quand on peut disposer d'un temps assez long, on a évidemment intérêt à explorer lentement l'image et à la transmettre sur une voie téléphonique : c'est par exemple le cas du fac-similé qui demande actuellement 6 minutes pour transmettre un document de format classique. C'est également le cas de certaines images transmises par des satellites ou par des sondes lancées vers Mars ou Vénus, mais alors dans le simple but de diminuer la bande passante pour améliorer le rapport signal/bruit.

Le problème est très différent lorsqu'on s'intéresse aux signaux du type télévision où les standards de balayage liés aux propriétés physiologiques de l'œil et à la reproduction fidèle des mouvements imposent la transmission en temps réel d'une grande quantité d'information, laquelle doit alors se payer en largeur de bande de fréquences. Or, s'il est possible d'accepter, que pour les 2 ou 3 chaînes de télévision "commerciale", la diffusion d'un seul programme occupe l'équivalent en bande passante de 1000 à 1500 voies téléphoniques, au contraire, pour les transmissions de point à point - comme le visio-phone - il est indispensable de comprimer au maximum l'information afin d'utiliser au mieux les canaux disponibles.

Il semble fort heureusement possible de réduire l'encombrement spectral, sans déteriorer la qualité de l'image, en raison de la redondance des
images. On peut tirer parti de la redondance temporelle, en comparant deux images successives qui sont en général peu différentes l'une de l'autre dans le cas du visiophone, où le sujet bouge peu. On peut aussi, mettre à profit la corrélation entre des points de l'image pour essayer de réduire le débit d'information à transmettre. C'est la mise en œuvre d'une de ces méthodes d'élimination de la redondance spatiale qui fait l'objet de cet exposé.

II - COMPRESSION PAR TRANSFORMATION GLOBALE -

II.1. Définition et avantages de la transformation globale

Le principe de cette méthode de compression [1] consiste à éliminer l'information superflue, non sur l'image elle-même mais sur une transformée globale de cette image. La transformation choisie doit être linéaire, inversible et doit entraîner une concentration de l'information utile dans l'espace transformé.

Certaines études menées au CNET [2,4] ont montré que des taux de compression x importants, de l'ordre de 5 à 10, peuvent être obtenus par traitement de la transformée de Fourier ou de la transformée de Hadamard d'une image. Le calcul des transformées était effectué sur le calculateur du CNET (Honeywell Bull 635) et non en temps réel : à titre indicatif, dans le cas d'une image de 256 lignes de 256 points, le temps de calcul d'une transformée demande 72 secondes par la transformation de Fourier et 34 secondes par la

x Le taux de compression est défini comme le rapport entre le nombre d'éléments binaires de l'image initiale et le nombre d'éléments binaires effectivement transmis.
transformation de Hadamard [4].

La figure 1 donne le schéma d'un système de compression de ce type. Dans ce système la transformation est effectuée sur les échantillons donnant la luminosité des points de l'image. Le traitement de compression et de codage est ensuite réalisé sur la transformée avant transmission. A la réception après décodage et éventuellement une opération de lissage, le signal subit la transformation inverse pour reconstruire l'image d'origine.

Par rapport aux autres méthodes de compression, celle de la transformation globale présente deux avantages principaux:

- d'une part, on peut atteindre des taux de compression plus forts, pour une dégradation comparable de l'image. Ceci est lié à la concentration de l'énergie en un assez petit nombre de points de l'espace transformé, ce qui facilite en outre la mise en oeuvre des procédés de compression.

- d'autre part, on obtient une certaine tolérance aux erreurs qu'apporte le canal de transmission, liée à la "moyenne" que réalise la transformation : chaque point de l'image reconstruite provient de la somme pondérée de tous les points de la transformée, autrement dit le bruit survenant à un moment donné sur la ligne de transmission est réparti sur tous les points de l'image au lieu d'afecter l'un d'entre eux plus particulièrement. Cette "dilution" des défauts est excellente sur le plan subjectif.
II.2. Quelques propriétés de la transformation de Hadamard [5]

A part la transformation de Fourier, la transformation de Hadamard est l'une des plus connues des transformations linéaires inversibles. Elle réalise une décomposition de l'image par des fonctions d'ondes orthogonales autres que des sinusoides (fonctions de Walsh).

Rappelons sommairement quelques propriétés de la transformation de Hadamard symétrique, en nous limitant au cas où l'ordre \(N \) de la transformation est une puissance de 2, soit \(N = 2^n \). La méthode de construction de la matrice de transformation est alors particulièrement simple. Elle est obtenue par récurrence à partir de la matrice (scalaire) \(H_1 \) correspondant à \(n = 0 \) par les relations :

\[
H_1 = 1
\]

et

\[
H_{2N} = \begin{bmatrix} H_N & H_N \\ H_N & -H_N \end{bmatrix}
\]

Cette matrice est symétrique par construction. Elle peut être rendue orthogonale au moyen d'un facteur de normalisation \(1/\sqrt{N} \). Elle est alors, de surcroît, involutive en vertu de l'équation

\[
H_N^2 = N I_N
\]

où \(I_N \) est la matrice unité.

La transformation de Hadamard est particulièrement attrayante dans le traitement d'images grâce aux propriétés suivantes :
- les composantes sont toutes égales en valeur absolue et valent ±1, ce qui permet donc une réalisation aisée.

- la transformation est involutive, c'est à dire que le même opérateur - et donc le même dispositif à ondes acoustiques de surface - réalise la transformation inverse.

- La matrice peut être décomposée en produit tensoriel dont le nombre de facteurs est au plus égal à n. Cette propriété peut s'exprimer sous la forme suivante :

\[H_{2n} \otimes H_{2p} = H_{2n+p} \]

où \(\otimes \) désigne l'opération de produit tensoriel.

La décomposition ultime,

\[H_{2n} = H_2 \otimes H_n \]

qui exprime la matrice \(H_N \) sous forme d'un produit tensoriel de matrices 2 x 2 conduit à la transformation rapide de Hadamard (FHT ou "Fast Hadamard Transform").

Analytiquement, la transformation d'un vecteur \(X_i \) (i = 0,1,2,..., N-1) s'exprime sous la forme

\[Y_{j_1, j_2, \ldots, j_n} = \sum_{i_1, i_2, \ldots, i_n} H_{i_1}^{(2)} H_{i_2}^{(2)} \ldots H_{i_n}^{(2)} X_{i_1, i_2, \ldots, i_n} \]

où \((i_1, i_2, \ldots, i_n)\), \((j_1, j_2, \ldots, j_n)\) sont les décompositions binaires de \(i\) et \(j\) respectivement, et où \(H_{i_k}^{(2)}\) sont les composantes d'indices \(j_k\) et \(i_k\) de la matrice de Hadamard 2 x 2.

III - CALCUL DE LA TRANSFORMEE DE HADAMARD AU MOYEN D'ONDES ACOUSTIQUES DE SURFACE -

III.1. Principe
Pour un balayage et une cadence d'échantillonnage donnés, l'image initiale peut se mettre sous la forme d'une fonction \(i(t)\) où \(i\) est la luminosité de l'échantillon au temps \(t\). On peut représenter cette fonction par un vecteur à \(N\) composantes, si \(N\) est le nombre de points élémentaires de l'image (image complète ou sous-image de plus petites dimensions). La transformée directe à une dimension de l'image, \(I(s)\), définie également comme un vecteur à \(N\) composantes s'écrit alors sous la forme :

\[
I(s) = \sum_{t=1}^{N} i(t) h(t,s)
\]

ou encore en notation matricielle

\[
[I] = [H][i]
\]

Dans notre cas, \([H]\) est la matrice de Hadamard de dimension \(N\).

Le calcul d'une telle transformation \([6]\) de Hadamard est obtenu simplement au moyen d'ondes acoustiques se propageant à la surface d'un substrat donné (figure 2) :
- le vecteur \([i]\) est obtenu par balayage et échantillonnage, et le signal électrique ainsi obtenu est appliqué au transducteur d'entrée
- la matrice d'Hadamard \([H]\) est "câblée" sur le substrat sous forme de lignes à retard à prises multiples.

Dans le cas d'un substrat piézoélectrique, on utilise des transducteurs interdigitaux pour la conversion d'énergie à l'entrée et sur les prises dont la phase \(0\) ou \(\pi\) est déterminée par le signe + ou - du terme correspondant de \([H]\). La distance \(l\) entre
deux prises successives est égale à vt où v est la vitesse de l'onde acoustique de surface et t le temps élémentaire séparant 2 points successifs échantillonnés de l'image initiale.

Pour décrire avec plus de détails le fonctionnement du transformateur de Hadamard, considérons un exemple très simple : le cas de sous-images de 4 points. On obtient le premier terme I_1 de la transformée directe, en lisant, pendant un temps Δt le signal électrique de la ligne n° 1 au temps t_0 où i_1, i_2, i_3, i_4 sont respectivement situés au niveau des transducteurs 11, 12, 13 et 14, ce qui donne la combinaison linéaire $(i_1 + i_2 + i_3 + i_4)$. Les autres termes I_2, I_3 et I_4 sont lus au même moment sur les lignes 2, 3 et 4.

Cette disposition présente l'inconvénient de faire apparaître en parallèle sur quatre sorties les différents termes I_n. La mise en série, afin de transmettre la transformée sur un câble unique, est heureusement aisée à obtenir : il suffit de décaler chaque ligne à retard de $t = vt$ par rapport à la précédente (figure 3) et de venir faire la lecture successivement sur les lignes 1, 2, 3 et 4, au rythme de l'horloge.

À la réception on utilise le même dispositif puisque la transformation de Hadamard est involutive.

III.2. Réalisations diverses

Jusqu'à présent nous avons supposé qu'il était possible de décrire l'image à traiter au moyen de vecteurs à N composantes et nous avons réalisé la transformation à une dimension de ces vecteurs.
On peut également décomposer l'image en zones carrées de N lignes de N points chacune. Par un échantillonnage à deux dimensions on obtient la fonction \(i(x, y) \), luminosité du point d'abscisse \(x \) et d'ordonnée \(y \). On effectue alors la transformation directe à deux dimensions de l'image :

\[
I(u, v) = \sum_{x=1}^{N} \sum_{y=1}^{N} i(x, y) k(x, y, u, v)
\]

Puisque, dans la transformation de Hadamard le noyau \(k \) est séparable, le calcul de la transformée \(I(u, v) \) peut être réalisé en deux étapes, au moyen de deux applications successives d'une transformation à une dimension : tout d'abord sur les points de chaque ligne de l'image initiale et ensuite sur chaque colonne de l'image intermédiaire ainsi obtenue. De plus, la propriété de symétrie de la matrice de Hadamard, qui signifie que le traitement est identique en \(x \) et en \(y \), correspond bien avec les observations statistiques qui montrent que pour la plupart des images les variations de la luminosité sont très semblables dans les directions verticale et horizontale.

On décompose ainsi le noyau \(k(x, y, u, v) \) en

\[
k(x, y, u, v) = h(x, u) h(y, v)
\]

et on obtient d'abord l'image intermédiaire \(J \)

\[
J(u, y) = \sum_{x=1}^{N} i(x, y) h(x, u)
\]

puis la transformée \(I \) par

\[
I(u, v) = \sum_{y=1}^{N} J(u, y) h(y, v)
\]
ou encore en notation matricielle

\[\begin{bmatrix} i_1 \\ i_2 \end{bmatrix} = \begin{bmatrix} H \end{bmatrix} \begin{bmatrix} i \end{bmatrix} \]

Repreons l'exemple simple de la sous-image de 4 points disposés, non plus en ligne comme précédemment, mais en zone carrée de 2 lignes de 2 points. L'image intermédiaire \(I \) est obtenue en effectuant le produit matériel \([i][H] \). La matrice

\[
\begin{bmatrix}
 i_{11} & i_{12} \\
 i_{21} & i_{22}
\end{bmatrix}
\]

est obtenue par balayage ligne par ligne des plages successives. \([H] \), la matrice d'Hadamard de dimension 2 est câblée sur le substrat sous la forme de 2 lignes à retard comprenant deux prisez chacune séparées de \(t = t \tau \) (cf. figure 4 a); la ligne 2 étant décalée, comme précédemment de \(v \tau \) par rapport à la ligne no 1.

Le premier terme de l'image intermédiaire \(J_{11} \) est obtenu en lisant le signal électrique de la ligne 1 à l'instant \(\tau_0 \) où \(i_{11} \) et \(i_{12} \) sont respectivement arrivés sous les transducteurs 11 et 12, ce qui donne \((i_{11} + i_{12}) \). Le second terme \(J_{12} = (i_{11} - i_{12}) \) est lu au temps \(\tau_0 + \tau \) sur la ligne 2. De même

\(J_{21} = (i_{21} + i_{22}) \) sera lu au temps \(\tau_0 + 2\tau \) sur la ligne 2, \(J_{22} = (i_{21} - i_{22}) \) au temps \(\tau_0 + 3\tau \) sur la ligne 2. On obtient donc aisément, en série, les termes successifs de \(J \) en venant lire alternativement la ligne 1 et la ligne 2 au rythme \(\tau \).

La transformée complète s'obtient en effectuant la deuxième étape \([I] = [H][J] \) de façon semblable. Il faut simplement alors que la distance
entre deux prises sur les lignes à retard soit égale à N! (si N est le nombre de points par ligne, soit ici 2) c'est à dire à v fois le temps de balayage d'une ligne de l'image initiale (fig. 4 b), ceci de façon que ce soient les termes successifs des colonnes de [J] qui se trouvent situées au même temps au niveau des prises de lecture. La lecture se fait également de façon un peu différente : on obtient d'abord tous les termes de la première ligne de la transformée [I] en interrogant, à des temps séparés de l'intervalle la ligne 1, N fois consécutives, puis les termes de la deuxième ligne en lisant N fois la ligne 2, etc...

En résumé, pour obtenir la transformée d'une image de N^2 points, il est possible de faire le calcul en une seule étape mettant en jeu la matrice de Hadamard de dimension N^2, comprenant donc N^4 termes, soit N^4 prises dans la réalisation en ondes acoustiques de surface. Le calcul peut aussi s'effectuer en 2 étapes qui chacune utilise la matrice de Hadamard de dimension N : il faudra alors 2N^2 prises seulement.

Enfin, en appliquant l'algorithme pour une transformation rapide de Hadamard (PTH) on peut décomposer le calcul de la transformée d'une image de 2p points en p étapes successives, chacune de ces étapes ne mettant en jeu que la matrice de Hadamard de dimension 2.

La figure 5 représente le cas d'une sous-image de 16 points et trois réalisations possibles du calcul de la transformée.
La solution à l'étage apparaît sur la figure 5 a. L'électronique de lecture est particulièrement simple : une seule interrogation à des intervalles tous égaux à τ. La réalisation n'exige qu'un seul substrat, mais le nombre de prises (256 dans ce cas) à déposer sur ce substrat est élevé et entraînerait sans doute un rendement de fabrication assez bas. Si cette solution peut être envisagée pour des sous-images de 16 points ou moins, il est irréaliste de la retenir pour un nombre supérieur de points.

La figure 5 b montre la réalisation de la transformée en 2 étapes. La mise en oeuvre est un peu plus compliquée : elle nécessite deux substrats au lieu d'un mais il faut remarquer que chacun d'entre eux ne comporte plus que 16 transducteurs et l'une des plaquettes est de faibles dimensions ; en revanche l'électronique est un peu plus complexe : elle requiert deux systèmes d'interrogation légèrement différents et il est nécessaire d'amplifier le signal intermédiaire J avant d'attaquer le deuxième étage. C'est sans doute la meilleure solution dans le cas de 16 points par sous-image, car elle réalise un compromis entre les difficultés de réalisation de la partie proprement acoustique et de l'électronique.

La réalisation de la FHT est illustrée par la figure 5 c, toujours dans le cas de 16 éléments/sous-image. Elle s'effectue alors en 4 étapes ce qui augmente la complexité des circuits électroniques mais ce qui simplifie les dispositifs à ondes acoustiques de surface : le nombre de substrats croît mais chacun ne possède plus que 4 prises ce qui est aisé à fabriquer.
avec un bon rendement. Dans le cas de 16 points/sous-image, il n'est pas certain que cette solution soit à préférer à la précédente mais il est sûr que pour des nombres supérieurs de points elle devient intéressante. De toutes façon quand le nombre de points devient très grand (supérieur à 64) elle reste la seule solution.

Le tableau I compare ces différentes réalisations de la transformée de Hadamard en fonction du nombre de points par sous-image dans le cas d'une image de visiophone. Le standard actuel comprend environ 267 lignes de 235 points mais dans un avenir plus ou moins proche les tubes laisseront la place à des dispositifs de prise de vue et de restitution à état solide et des dimensions de la forme 2^n seront retenues pour des facilités d'adressage : le standard sera sans doute alors de 256 lignes de 256 points. Les longueurs des différentes lignes à retard sont exprimées en µs, ceci ne préjugant pas la vitesse des ondes acoustiques à la surface de différents substrats et calculées pour un temps d'échantillonnage τ = 0,5µs.

La dernière ligne du tableau I, qui considère le cas de la transformation de l'image complète, ne figure que pour mémoire, non seulement à cause des difficultés de réalisation mais essentiellement parce qu'il présente peu d'intérêt car le degré de corrélation spatiale est plus élevé sur de petites parties de l'image que sur l'image entière. La dimension optimale des sous-images dépend évidemment de la constitution des images à traiter mais des zones linéaires
de 8 ou 16 points ou des zones carrées de 16, 64 ou 256 éléments semblent les plus intéressantes avec, peut-être, une préférence pour des sous-images carrées de 8 lignes de 8 points \([7,8]\).

III.3. Résultats expérimentaux

Pour montrer la faisabilité d'une telle transformation et commencer la comparaison expérimentale des différentes possibilités, on a étudié un transformateur de Hadamard effectuant le calcul en 2 étapes sur des sous-images carrées de 16 points (cf. figure 6). Le premier étage de ce transformateur permet évidemment le calcul de la transformation linéaire d'ensembles de 4 points.

La bande passante du signal visiophonique atteint 1 MHz; on peut donc utiliser une fréquence d'échantillonnage de 2 MHz; et le temps séparant deux points successifs est alors égal à 0,5 µs. Les caméras actuelles ne permettent que le balayage de type télévision mais il est très probable que les dispositifs de prise de vue à état solide permettront d'acquérir plus commodément des sous-images carrées de dimensions données.

Les dispositifs à ondes acoustiques de surface ne pouvant fonctionner en bande de base, le signal électrique appliqué à l'entrée du transformateur est une porteuse à 20 MHz modulée en amplitude, par le signal vidéo. Les prises sont obtenues par photogravure d'une couche mince d'or déposée sur un substrat en niobate de lithium (coupe Y, direction Z). Le transducteur d'entrée et les prises comportent 5 doigts pour que d'une part la bande passante soit suffisante.
et que d'autre part l'efficacité de chaque prise soit aussi constante que possible. Le premier étage utilise une plaquette de 20 x 20 mm² : la distance entre deux prises est voisine de 1,8 mm (τ = 0,5 µs) et les lignes à retard sont décalées de la même quantité l'une par rapport à l'autre, de façon à réaliser la conversion parallèle x série des signaux électriques de sortie (cf. fig. 3). De la même façon, le deuxième étage du transformateur utilise une plaquette de 20 x 50 mm², la distance entre deux prises étant alors voisine de 7,2 mm (cf. fig. 7). On lit les différentes composantes de la transformée en ouvrant au bon moment une porte pendant 0,2 µs ; les portes analogiques sont réalisées sous forme de modulateurs en anneaux commandés par des circuits logiques classiques. Ces signaux sont ensuite additionnés et amplifiés de 40 dB. Avant amplification, les signaux prélevés sur les lignes à retard, sans réseaux d'adaptation, sont d'un niveau inférieur de 40 dB à celui de l'entrée ; ceci est nécessaire pour éviter les réflexions électriques et assurer une efficacité uniforme à toutes les prises. La figure 8 indique la dispersion obtenue sur deux lignes à retard attaquées par une impulsion à 20 MHz. En 8a on voit la réponse d'une ligne du premier étage du transformateur, et en 8b celle d'une ligne du second étage. L'homogénéité des différentes prises est très importante puisque le traitement du signal se fait sous forme analogique.

La figure 9 montre les premiers résultats obtenus dans le cas de la transformation à une dimension de série de 4 points (c'est à dire n'utilisant que le premier étage des transformateurs décrits...
ci-dessus). On simule le signal vidéo d'entrée sous forme de suites récurrentes de huit échantillons successifs dont les intensités sont distribuées selon une loi sinusoidale. On voit en 9 a le signal électrique d'entrée et en 9 b sa transformée de Hadamard directe, obtenue expérimentalement. On peut comparer ce résultat avec les valeurs calculées des composantes de la transformée (cf. fig. 9 c). L'accord est bien meilleur pour les composantes correspondant au niveau continu - dont l'amplitude est grande - que pour les composantes à fréquence F, 2F et 3F, qui sont beaucoup plus faibles car elles sont évidemment bien plus affectées en valeur relative par de légères différences dans l'efficacité des prises. A la réception, la transformation inverse s'effectue dans le même type de transformateur pour redonner le signal initial. La figure 9 d montre le résultat obtenu avant détection et filtration. En dépit d'un certain nombre de défauts de régularités des prises et de linéarité du traitement, on voit que la double transformée est tout à fait semblable au signal de départ. Les figures 10, 11 et 12, montrent des résultats acquis dans des conditions similaires mais pour des fréquences vidéo égales respectivement à 100 kHz, 50 kHz, et 10 kHz. De ces mesures effectuées dans la gamme 10 Hz - 2 MHz, on peut déduire la fonction de transfert du système : la réponse est très plate dans toute la gamme de fréquence nécessaire pour passer le signal visiophonique, l'affaiblissement à 1 MHz ne dépassant pas 3%.

Les systèmes de transmission d'images réalisés sous forme numérique codent les intensités à 6 ou 7 moments, c'est à dire que le nombre de niveaux
de \(\text{grs} \) vaut 64 ou 128 et donc que la précision sur ce niveau doit être d'environ 1%. Cette précision est difficile à obtenir directement avec des transducteurs interdigités sans aucun réglage. Par ailleurs la dynamique de la transformée est bien plus importante que celle du signal initial, aussi l'exigence sur la précision définitive et la linéarité sera-t-elle peut-être encore plus grande. Il faut alors envisager de pouvoir régler très précisément l'efficacité de chaque prise. Pour cela on peut associer à chacun d'elles un transistor dont on fera varier l'impédance d'entrée et le gain. On peut aussi obtenir des prises ajustables en utilisant des détecteurs MOSFET piézorésistifs sur des substrats semiconducteurs \([9,10]\). Le prix à payer, dans les deux cas, est d'une part un réglage minutieux et d'autre part une consommation électrique accrue pour l'alimentation des dispositifs actifs.

IV - CONCLUSION

Les essais poursuivis jusqu'à présent ont montré qu'il était impossible de réaliser, en temps réel, la transformée de Hadamard directe et inverse d'une image de visiophone, au moyen de lignes à retard à prises multiples mettant en œuvre des ondes acoustiques de surface. On a obtenu d'assez bons résultats pour des suites ne comportant que peu de points. Les limitations actuelles semblent liées à l'inégale efficacité des prises tant en amplitude (doigts de longueur et d'épaisseur différentes, matériau inhomogène en coefficient de couplage, diffraction, réflexions...) qu'en phase (défauts de dessin du masque ou de reproduction, variations de la vitesse...
des ondes acoustiques sur le substrat...). On peut espérer que l'utilisation de prises ajustables permettra de pallier ces insuffisances.

On peut essayer de réaliser d'autres transformations que celle de Hadamard s'il est possible d'ajuster avec précision l'efficacité des prises, donc la valeur des différents termes de la matrice de transformation. On pourrait alors comparer les diverses transformations : Fourier, Hadamard, Haar, Kaczunen-Loeve,.. (dont certaines présentent l'avantage de comporter un assez grand nombre de termes nuls dans la matrice de transformation) pour obtenir le taux de compression maximal.

D'autre part, les essais se poursuivent pour traiter des sous-images de plus grandes dimensions. On peut d'ailleurs se demander quelle est la taille idéale des sous-images. Du point de vue théorique, des études sont en cours au CCETT pour déterminer, indépendamment de la constitution des images, quel est le nombre optimal de points : la corrélation spatiale entre points - qui est la base du procédé de compression - est évidemment plus grande entre points voisins qu'entre points éloignés, mais il faut cependant que la sous-image contienne un nombre minimal de points car, pour une qualité apparente donnée, le taux de compression est d'autant plus élevé que le nombre de points considérés est plus grand. Sur le plan pratique, d'autres limitations interviennent.

CCETT : Centre Commun d'Études de Télévision et Télécommunications.
avec le balayage classique du type télévision, une mémoire intermédiaire peut être nécessaire, et son volume dépend très directement de la taille de la sous-image; de plus les cristaux piézoélectriques ou semiconducteurs ne sont disponibles aisément et économiquement que pour des longueurs inférieures à 10 cm. Cette dernière condition limite pour l'instant le nombre de points par sous-image à 32. On peut cependant envisager d'étendre cette limite en adoptant une disposition différente des lignes à retard, en recherchant des matériaux dans lesquels la vitesse des ondes acoustiques de surface est plus lente ou encore en reportant le problème sur le plan électronique. En effet l'adaptation de dispositifs à compression du temps (couramment utilisés dans les systèmes SONAR) [11], permet d'ajuster la durée du traitement à une valeur plus faible, au prix d'une augmentation de la largeur de bande, le produit BT restant constant.

En conclusion, il faut souligner que l'application qui vient d'être décrite n'est pas du tout limitative. Plus généralement, les ondes acoustiques de surface sont capables d'effectuer en temps réel toute transformation linéaire à coefficients complexes constants. On obtient ainsi la réalisation analogique d'un "filtre numérique", en principe non récursif, mais cette limitation n'est pas fondamentale. Les seules vraies limitations sont liées au produit BT de la bande passante par le temps de retard et au "bruit de pondération" de la transformation qui dépend de la précision de la réalisation technologique.
BIBLIOGRAPHIE

 (Academic Press, 1970)

[2] MARANO P. and SCHWARTZ P.Y. : "Compression d'information sur la transformée de Fourier d'une image"

 Ann. Téléc., 1971, 26, pp. 135-146

 IBM Report, 1972, RC 3789

 Ann. Téléc., 1972, 27, pp. 163 - 172

and MIZE J.P.
"MOSFET Ultrasonic Surface - wave detectors for
programmable matched filters"

[10] DEFRANOULD Ph. "100 MHz MOSFET Detection of
Rayleigh Surface waves",
Ultrasonics Symposium, 1972, Boston pp. 229 - 232

adapté de signaux basse-fréquence, en temps réel
et après compression de temps".
Figure 1 : Schéma du système de compression par transformation globale

Figure 2 : Schéma du transformateur de Hadamard à ondes acoustiques de surface
Figure 3 : Masque photographique du transformateur de Hadamard

Figure 7 : Masque photographique du deuxième étage
du transformateur (16 points)
Figure 4 : Transformation de Hadamard en 2 étapes

a) Premier étage

b) Deuxième étage
Figure 5 : Diverses réalisations de la transformée d'une image de 16 points

a) Solution en 1 étape
b) Solution en 2 étapes
c) FFT - solution en 4 étapes ($2^4 = 16$)
<table>
<thead>
<tr>
<th></th>
<th>64</th>
<th>-</th>
<th>13.10</th>
<th>-</th>
<th>1</th>
<th>3.10</th>
<th>1</th>
<th>(256)²</th>
</tr>
</thead>
<tbody>
<tr>
<td>52 x 128.5</td>
<td>32</td>
<td>-</td>
<td>121</td>
<td>-</td>
<td>256</td>
<td>645</td>
<td>106</td>
<td>256</td>
</tr>
<tr>
<td>+ 64.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de visiphone.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cas d'une image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>image d'une</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>photo par sous-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en fonction de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>le nombre de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mecanique en</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cas et</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>calculer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>differences &-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>comparaison des</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>card.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lagrange (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>de charge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L : longueur en</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>record</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L : nombre de</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N : nombre total</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>p Itapes</td>
<td>1</td>
<td>4</td>
<td>3.5</td>
<td>16</td>
<td>4</td>
<td>3.74</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>N : nombre de</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>sous-image</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>images par sous-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N : nombre de</td>
<td>2</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>8</td>
<td>2</td>
<td>1.5</td>
<td>4</td>
</tr>
<tr>
<td>sous-Itapes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLEAU I
Figure 6 : Schéma de l'expérimentation de double transformation
Figure 8 : Dispersion d'efficacité des prises
 a) Ligne du premier étage
 b) Ligne du second étage
Figure 9 : Transformations de Hadamard

a) Signal électrique initial

b) Transformée directe de Hadamard expérimentale
c) Transformée directe de Hadamard calculée
d) signal reconstruit après double transformation
Figure 10 : Transformations de Hadamard
a) Signal électrique initial
b) Transformée directe de Hadamard expérimentale
c) Signal reconstruit après double transformation
Figure 11 : Transformations de Hadamard
a) Signal électrique initial
b) Transformée directe de Hadamard expérimentale
c) Signal reconstruit après double transformation
Figure 12 : Transformations de Hadamard

a) Signal électrique initial
b) Transformée directe de Hadamard expérimentale
c) Signal reconstruit après double transformation